Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(13): 9434-9443, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507716

RESUMO

Electrocatalytic synthesis of hydrogen peroxide (H2O2) in acidic media is an efficient and eco-friendly approach to produce inherently stable H2O2, but limited by the lack of selective and stable catalysts under industrial-relevant current densities. Herein, we report a diatomic cobalt catalyst for two-electron oxygen reduction to efficiently produce H2O2 at 50-400 mA cm-2 in acid. Electrode kinetics study shows a >95% selectivity for two-electron oxygen reduction on the diatomic cobalt sites. In a flow cell device, a record-high production rate of 11.72 mol gcat-1 h-1 and exceptional long-term stability (100 h) are realized under high current densities. In situ spectroscopic studies and theoretical calculations reveal that introducing a second metal into the coordination sphere of the cobalt site can optimize the binding strength of key H2O2 intermediates due to the downshifted d-band center of cobalt. We also demonstrate the feasibility of processing municipal plastic wastes through decentralized H2O2 production.

2.
Molecules ; 29(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893503

RESUMO

Despite several decades of research, the beneficial effect of flavonoids on health is still enigmatic. Here, we focus on the antioxidant effect of flavonoids, which is elementary to their biological activity. A relatively new strategy for obtaining a more accurate understanding of this effect is to leverage computational chemistry. This review systematically presents various computational chemistry indicators employed over the past five years to investigate the antioxidant activity of flavonoids. We categorize these strategies into five aspects: electronic structure analysis, thermodynamic analysis, kinetic analysis, interaction analysis, and bioavailability analysis. The principles, characteristics, and limitations of these methods are discussed, along with current trends.


Assuntos
Antioxidantes , Química Computacional , Flavonoides , Termodinâmica , Flavonoides/química , Flavonoides/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Disponibilidade Biológica , Cinética , Humanos
3.
Org Biomol Chem ; 21(31): 6397-6404, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37497645

RESUMO

Fe(II)/2OG-dependent oxygenase γ-butyrobetaine hydroxylase (BBOX) stereoselectively hydroxylates inactive C-H bonds and produces L-carnitine. It has potential applications in the biosynthesis of L-carnitine and the synthesis of other small molecule alcohols. In this paper, we systematically explore the substrate range of Pseudomonas sp. AK1 BBOX (psBBOX), with emphasis on the quaternary ammonium portion of γ-butyrobetaine (γ-BB). The space limitation of the "aromatic cage" in psBBOX in the hydroxylation of large quaternary ammonium analogues was studied, and the role of four aromatic amino acid residues in the substrate binding mode was analyzed. Consequently, the F188A mutant was developed with the ability to hydroxylate cyclic quaternary ammonium analogues and generate new alcohol compounds by breaking the limitation of the "aromatic cage".


Assuntos
Compostos de Amônio , Pseudomonas , Carnitina/química , gama-Butirobetaína Dioxigenase/química , gama-Butirobetaína Dioxigenase/metabolismo , Etanol
4.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37762525

RESUMO

It has been reported that in an oxidative environment, the flavonoid 2R,3R-dihydroquercetin (2R,3R-DHQ) oxidizes into a product that rearranges to form quercetin. As quercetin is a very potent antioxidant, much better than 2R,3R-DHQ, this would be an intriguing form of targeting the antioxidant quercetin. The aim of the present study is to further elaborate on this targeting. We can confirm the previous observation that 2R,3R-DHQ is oxidized by horseradish peroxidase (HRP), with H2O2 as the oxidant. However, HPLC analysis revealed that no quercetin was formed, but instead an unstable oxidation product. The inclusion of glutathione (GSH) during the oxidation process resulted in the formation of a 2R,3R-DHQ-GSH adduct, as was identified using HPLC with IT-TOF/MS detection. GSH adducts appeared on the B-ring of the 2R,3R-DHQ quinone, indicating that during oxidation, the B-ring is oxidized from a catechol to form a quinone group. Ascorbate could reduce the quinone back to 2R,3R-DHQ. No 2S,3R-DHQ was detected after the reduction by ascorbate, indicating that a possible epimerization of 2R,3R-DHQ quinone to 2S,3R-DHQ quinone does not occur. The fact that no epimerization of the oxidized product of 2R,3R-DHQ is observed, and that GSH adducts the oxidized product of 2R,3R-DHQ on the B-ring, led us to conclude that the redox-modulating activity of 2R,3R-DHQ quinone resides in its B-ring. This could be confirmed by chemical calculation. Apparently, the administration of 2R,3R-DHQ in an oxidative environment does not result in 'biotargeting' quercetin.


Assuntos
Antioxidantes , Quercetina , Antioxidantes/farmacologia , Quercetina/farmacologia , Peróxido de Hidrogênio , Ácido Ascórbico , Glutationa , Quinonas
5.
Environ Res ; 208: 112780, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35065930

RESUMO

Periodic starvation was a common strategy for the rapid start-up of aerobic granular sludge (AGS), and investigating the behavior of microbes that originated from inner or outer layer in response to feast/famine condition could provide more details for the development or stability of AGS. In this work, the microbes of the AGS were isolated by layers, the aggregation of microbes, the adhesion behavior of microbes, and viscoelasticity of the layer formed by microbes, at feast/famine conditions, were investigated for the in-depth understanding of the start-up and stability of AGS. The famine condition reduced the negative charge and deprotonated carboxyl groups of the surface thereby boosting the aggregation and adhesion of microbes. The feast condition was more beneficial for the stability of the layer as it caused a denser layer of microbes. The inner core microbes (IC) presented a higher aggregation rate than the outer layer microbes (OL) at feast/famine conditions. Also, the IC presented the highest aggregation rate, adhesion rate, and adhesion mass at famine conditions, which was most in favor of the start-up stage of the aerobic granulation. Since the denser layer was formed by IC, IC had better advantages over OL at the famine stage in the formation of a more stable layer. This study affirmed the role of microbes in the inner layer of the granule during the start-up phase and provided a theoretical basis for understanding the significance of the famine period for rapid granulation.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Aerobiose , Reatores Biológicos , Viscosidade
6.
J Environ Manage ; 323: 116302, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36150350

RESUMO

It was an important discovery in wastewater treatment that the microorganisms in the traditional activated sludge can form aerobic granular sludge (AGS) by self-aggregation under appropriate water quality and operation conditions. With a typical three-dimensional spherical structure, AGS has high sludge-water separation efficiency, great treatment capacity, and strong tolerance to toxic and harmful substances, so it has been considered to be one of the most promising wastewater treatment technologies. This paper comprehensively reviewed AGS from multiple perspectives over the past two decades, including the culture conditions, granulation mechanisms, metabolic and structural stability, storage, and its diverse applications. Some important issues, such as the reproducibility of culture conditions and the structural and functional stability during application and storage, were also summarized, and the research prospects were put forward. The aggregation behavior of microorganisms in AGS was explained from the perspectives of physiology and ecology of complex populations. The storage of AGS is considered to have large commercial potential value with the increase of large-scale applications. The purpose of this paper is to provide a reference for the systematic and in-depth study on the sludge aerobic granulation process.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Aerobiose , Reatores Biológicos , Reprodutibilidade dos Testes , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
7.
Environ Res ; 198: 111311, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33989628

RESUMO

The start-up and stability of aerobic granular sludge (AGS) could be greatly influenced by pH variation. The inner core in the aerobic granules provided adhesion sites for microbes by extracellular polymeric substances (EPS) adhesion, the adhesion behavior of EPS and the properties of adhesion layer formed by EPS with pH changes might directly affect the start-up efficiency and stability of AGS. In this study, the adhesion behavior of EPS at an inorganic surface and the viscoelasticity of the EPS adhesion layer with pH variation was investigated by quartz crystal microbalance with dissipation monitoring, and the response of functional groups and intermolecular interactions to pH changes was explored. Based on the interaction energy calculation, it was found that the charge repulsion between substances dominated the interactions between EPS components and between EPS and the surface by regulating protonation and deprotonation of the functional groups of EPS with pH variation. A lower energy barrier between EPS and the surface at a lower pH value could facilitate the adhesion of EPS at the surface, which favored the rapid start-up of AGS. Moreover, the high ratio of both α-helix and intermolecular hydrogen bond at an acid condition could enhance the gel-strength of EPS, which provide AGS the resistance ability against external disturbance. This study revealed the mechanism of the interactions in EPS adhesion process with the variation of pH and provided useful information for a better understanding of the stability of the AGS.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Eliminação de Resíduos Líquidos , Aerobiose , Reatores Biológicos , Concentração de Íons de Hidrogênio , Esgotos , Viscosidade
8.
Ecotoxicol Environ Saf ; 225: 112763, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34544025

RESUMO

In this research, micro Coix lacryma-jobi L. vertical flow constructed wetlands (VFCWs) were set up using domestic sewage (DWS) and 1/2 Hoagland nutrient solution (HNS) as VFCWs water sources. 0, 20 mg L-1 and 40 mg L-1 of Cr6+ (in the form of K2Cr7O2) were added into the water sources separately in order to study the response of Coix lacryma-jobi L. under Cr6+ stress. The results showed that the inhibition rates of Cr6 + on plant height, stem diameter, shoot and root dry weight treated with HNS were 2.88~10.16%, 5.12~11.86%, 3.53~6.51% and 2.89~6.34% higher than those in DWS treatment. SEM analysis showed that the nuclear bilayer membrane was slightly damaged, the chromatin decreased and the number of mitochondrial cristae decreased when treated with 20 mg L-1 of Cr6+, however, organelle damage was more severe under 40 mg L-1 of Cr6+exposure. The X-ray energy spectrum analysis results indicated that the accumulation of chromium in epidermis and endodermis were higher than those in stele. The contents of total Cr in roots, stems and leaves treated with HNS were higher than those of DWS treatment. The highest content of Cr was observed in cell wall (32.12-188.1 mg kg-1), followed by vacuole (5.0-38.14 mg kg-1). The contents of Cr in each subcellular component in roots, stems, and leaves treated with HNS were higher than those of DWS, except for organelle components in the 14th week. DWS was used as water influent, the contents of easily migrated combined Cr (ETM) in roots, stems and leaves were significantly lower than those in HNS treatment. Improving the nutritional conditions of constructed wetlands might be beneficial to the improvement of their ability to purify chrome-containing waste water.


Assuntos
Coix , Cromo/toxicidade , Esgotos , Águas Residuárias , Áreas Alagadas
9.
Int J Mol Sci ; 23(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35008613

RESUMO

In all life forms, opposing forces provide the energy that flows through networks in an organism, which fuels life. In this concept, health is the ability of an organism to maintain the balance between these opposing forces, which creates resilience, and a deranged flow of energy is the basis for diseases. Treatment should focus on adjusting the deranged flow of energy, e.g., by the redox modulating activity of antioxidants. A major group of antioxidants is formed by flavonoids, a group of polyphenolic compounds abundantly present in our diet. The objective here is to review how the redox modulation by flavonoids fits in the various concepts on the mode of action of bioactive compounds, so we can 'see' where there is overlap and where the missing links are. Based on this fundament, we should choose our research path aiming to 'understand' the redox modulating profile of specific flavonoids, so we can ultimately rationally apply the redox modulating power of flavonoids to improve our health.


Assuntos
Antioxidantes/farmacologia , Flavonoides/farmacologia , Radicais Livres/metabolismo , Humanos , Oxirredução , Estresse Oxidativo
10.
J Environ Manage ; 299: 113602, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34454201

RESUMO

The pyrolysis of excess sludge derived from wastewater treatment plants to prepare biochar can achieve the mass-reduction and harmlessness of solid waste, but it is also necessary to further explore the application prospect of these biochars as a resource for wastewater treatment. In this study, Fe-modified biochar (BC-Fe) was prepared by pyrolysis of excess sludge modified by FeCl3 solution. The molecular structure, elemental valence state, and composition of biochars were comprehensively investigated. The results showed that, compared with the biochar prepared from sludge without modification (BC-blank), the O/C ratio of BC-Fe increased from 0.07 to 0.12, and the (N + O)/C ratio increased from 0.21 to 0.27, indicating increased polarity and weakened aromaticity. The ratio of integrated intensity of the D band and G band in the Raman spectrum increased from 1.34 to 2.40, showing the increased defect structure of the biochar obtained by Fe modification. In the reaction between BC-Fe and dicamba, the removal rate of dicamba reached 92.1% within 180 min, which was far higher than the 17.8% of BC-blank. It was confirmed the adsorption removal dominated and accounted for 70.6% of the dicamba removal by BC-Fe, and the adsorption capacity of biochar could be significantly enhanced by Fe-modification by 5.3 times. Moreover, the persistent free radicals (PFRs) on the surface of biochar was detected by an electron paramagnetic resonance analyzer, and the decline of PFRs signals after the reaction revealed that PFRs participated in the degradation process of dicamba. Through Q-TOF analysis, it could be concluded that dicamba was first converted to 3,6-dichlorosalicylic acid (DCSA) by PFRs reduction and then further transformed to 3,6-dichlorogentisic acid (DCGA). This study provided a reference for the understanding of the removal mechanism of dicamba by Fe-modified biochar and offered an application potential of biochar derived from Fe-containing sludge for the pollution control of dicamba pesticide pollutants.


Assuntos
Esgotos , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Dicamba , Poluentes Químicos da Água/análise
11.
J Environ Manage ; 284: 112113, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33571853

RESUMO

The improvement of the catalytic performance of sludge-based biochar plays an important role in the catalytic application of biochar. This work aimed to use transition metals and rare earth elements (Fe, Ce, La, Al, Ti) to modify sludge and prepare modified biochar with better catalytic performance through pyrolysis. Through the Fourier transform infrared spectrometer, Raman spectrometer, and X-ray photoelectron spectroscopy, the effects of different metal modifications on the surface morphology, molecular structure, element compositions, and valence of elements of biochar were comprehensively investigated. The results showed that metal elements were successfully modified onto the surface of biochar as metal oxides. Although the highest intensity of persistent free radicals was detected in blank-biochar by electron spin resonance, the intensities of hydroxyl radicals catalyzed by modified biochars in H2O2 system were higher than that catalyzed by blank-biochar, indicating that the catalytic performance of modified biochar was mainly related to the metal oxide loaded and the defect structure on the surface of metal-modified biochar. Furthermore, in the H2O2 system, the degradation efficiencies of tetracycline catalyzed by the biochars within 4 h were 51.7% (blank-biochar), 90.7% (Fe-biochar), 69.0% (Ce-biochar), 59.9% (La-biochar), 58.0% (Al-biochar), 58.0% (Ti-biochar), respectively, suggesting that Fe-biochar not only possessed the best catalytic performance but also shortened the reaction time. This research not only provided the possibility for recycling the waste activated sludge, but also proposed a modification method to improve the catalytic performance of biochar.


Assuntos
Peróxido de Hidrogênio , Esgotos , Adsorção , Catálise , Carvão Vegetal
12.
J Environ Sci (China) ; 109: 135-147, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34607662

RESUMO

Effective cultivation of stable aerobic granular sludge (AGS) is a crucial step in the successful application of this technology, and the formation of AGS could be facilitated by some environmental stress conditions. Four identical sequencing batch reactors (SBRs) were established to investigate the aerobic granulation process under the same alternating ammonia nitrogen feeding strategy superimposed with different environmental conditions (inorganic carbon source, temperature, N/COD). Although various superimposed conditions induced a significant difference in the size, settling velocity, mechanic strength of AGS, mature aerobic granules could be successfully obtained in all four reactors after 70 days' operation, indicating the alternating ammonia nitrogen feeding strategy was the most critical factor for AGS formation. Based on the results of redundancy analysis, the presence of an inorganic carbon source could facilitate the cultivation of AGS with nitrification function, while the moderate temperature and fluctuant N/COD might benefit the cultivation of more stable AGS. In addition, superimposed stress conditions could result in the difference in the microbial population between four reactors, but the population diversity and abundance of microorganisms were not the determinants of AGS formation. This study provided an effective method for the cultivation of AGS by using alternating ammonia nitrogen feeding strategy.


Assuntos
Nitrogênio , Eliminação de Resíduos Líquidos , Aerobiose , Reatores Biológicos , Esgotos
13.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188142

RESUMO

In the antioxidant activity of quercetin (Q), stabilization of the energy in the quercetin radical (Q•) by delocalization of the unpaired electron (UE) in Q• is pivotal. The aim of this study is to further examine the delocalization of the UE in Q•, and to elucidate the importance of the functional groups of Q for the stabilization of the UE by combining experimentally obtained spin resonance spectroscopy (ESR) measurements with theoretical density functional theory (DFT) calculations. The ESR spectrum and DFT calculation of Q• and structurally related radicals both suggest that the UE of Q• is mostly delocalized in the B ring and partly on the AC ring. The negatively charged oxygen groups in the B ring (3' and 4') of Q• have an electron-donating effect that attract and stabilize the UE in the B ring. Radicals structurally related to Q• indicate that the negatively charged oxygen at 4' has more of an effect on concentrating the UE in ring B than the negatively charged oxygen at 3'. The DFT calculation showed that an OH group at the 3-position of the AC ring is essential for concentrating the radical on the C2-C3 double bond. All these effects help to explain how the high energy of the UE is captured and a stable Q• is generated, which is pivotal in the antioxidant activity of Q.


Assuntos
Teoria da Densidade Funcional , Elétrons , Quercetina/química , Vibração , Antioxidantes/química , Flavonoides/química , Radicais Livres , Hidroquinonas , Quempferóis/química , Modelos Químicos , Estrutura Molecular , Oxigênio
14.
Int J Mol Sci ; 21(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825576

RESUMO

Most studies on the antioxidant activity of flavonoids like Quercetin (Q) do not consider that it comprises a series of sequential reactions. Therefore, the present study examines how the redox energy flows through the molecule during Q's antioxidant activity, by combining experimental data with quantum calculations. It appears that several main pathways are possible. Pivotal are subsequently: deprotonation of the 7-OH group; intramolecular hydrogen transfer from the 3-OH group to the 4-Oxygen atom; electron transfer leading to two conformers of the Q radical; deprotonation of the OH groups in the B-ring, leading to three different deprotonated Q radicals; and finally electron transfer of each deprotonated Q radical to form the corresponding quercetin quinones. The quinone in which the carbonyl groups are the most separated has the lowest energy content, and is the most abundant quinone. The pathways are also intertwined. The calculations show that Q can pick up redox energy at various sites of the molecule which explains Q's ability to scavenge all sorts of reactive oxidizing species. In the described pathways, Q picked up, e.g., two hydroxyl radicals, which can be processed and softened by forming quercetin quinone.


Assuntos
Antioxidantes/química , Quercetina/química , Transporte de Elétrons , Sequestradores de Radicais Livres/química , Hidrogênio/química , Radical Hidroxila/química , Estrutura Molecular , Oxirredução , Prótons , Quinonas/química , Água
15.
J Environ Manage ; 268: 110734, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32510454

RESUMO

Oily sludge is the main hazardous waste produced by the petroleum industry, and its harmless disposal and recycling have become urgent problems. In this study, the pyrolysis technique was used to prepare oily sludge biochar at different temperatures (400 °C, 500 °C, 600 °C, and 700 °C). The characteristics of the biochar, including weight reduction, elemental composition, and molecular structure, were comprehensively investigated. From the perspective of the electrochemical properties of biochar, the relationship between the structure of the biochar and the redox capacity was discussed, and the feasibility of biochar as a battery cathode material was explored. The results suggested that the improper pyrolysis temperature could reduce the content of the quinone structure which was related to the redox capacity, the biochar prepared at 600 °C should have the strongest electron transfer capability. Moreover, the highest degree of condensation and aromaticity of pyrolysis products could be obtained at a higher pyrolysis temperature (700 °C), which might result in the relatively high discharge-charge capacity and good cycle performance of biochar which was used as an electrode material of a battery. This study explored the feasibility of pyrolysis as a disposal route for oily sludge waste and provided a reference for the electrochemical application of biochar prepared from oil sludge waste.


Assuntos
Pirólise , Esgotos , Carvão Vegetal , Óleos
16.
Entropy (Basel) ; 22(11)2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33263356

RESUMO

Heart rate variability (HRV) has been widely used as indices for autonomic regulation, including linear analyses, entropy and multi-scale entropy based nonlinear analyses, and however, it is strongly influenced by the conditions under which the signal is being recorded. To investigate the variability of healthy HRV under different settings, we recorded electrocardiograph (ECG) signals from 56 healthy young college students (20 h for each participant) at campus using wearable single-lead ECG device. Accurate R peak to R peak (RR) intervals were extracted by combing the advantages of five commonly used R-peak detection algorithms to eliminate data quality influence. Thorough and detailed linear and nonlinear HRV analyses were performed. Variability of HRV metrics were evaluated from five categories: (1) different states of daily activities; (2) different recording time period in the same day during free-running daily activities; (3) body postures of sitting and lying; (4) lying on the left, right and back; and (5) gender influence. For most of the analyzed HRV metrics, significant differences (p < 0.05) were found among different recording conditions within the five categories except lying on different positions. Results suggested that the standardization of ECG data collection and HRV analysis should be implemented in HRV related studies, especially for entropy and multi-scale entropy based analyses. Furthermore, this preliminary study provides reference values of HRV indices under various recording conditions of healthy young subjects that could be useful information for different applications (e.g., health monitoring and management).

17.
J Environ Manage ; 232: 197-206, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30472563

RESUMO

The process of anaerobic co-digestion is vital importance to resource recovery from organic solid wastes such as food waste and municipal sludge. However, its application is hindered by the limited understanding on the complex substrates-products transformation reactions and mechanisms therein. In this study, food waste (FW) and excess sludge (ES) from municipal wastewater treatment were mixed at various ratios (ES/FW 5:0, 4:1, 2:1, 1:1, 1:2, 1:4, w/w), and the co-digestion process was studied in a batch test. The consumption of substrates including soluble proteins and carbohydrates, the variation in the intermediates such as various volatile fatty acids, and the production of hydrogen and methane gases were monitored. The results suggested that 4:1 was likely the optimal ratio where substrates were consumed and biogas generated efficiently, whereas 1:2 and 1:4 caused severe inhibition. Fermentation of ES alone produced mainly acetic and propionic acid, while the addition of FW led to butyric acid type fermentation. Intermediates in the fermentation liquid were tentatively identified, and the levels of NADH quantified using 3D-excitation/emission fluorescence spectrometry. One class of the intermediates, tryptophan-like proteins were correlated to the butyric acid accumulation in ES/FW mixtures, and NADH level was proposed as an indicator of VFAs production activities.


Assuntos
NAD , Esgotos , Anaerobiose , Reatores Biológicos , Ácidos Graxos Voláteis , Alimentos , Metano
18.
Curr Microbiol ; 75(9): 1214-1220, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29804206

RESUMO

Streptococcus agalactiae, a highly contagious mastitis pathogen, caused huge economic losses; meanwhile, repeated use of antibiotics results in the emergence of serious antibiotic residues and drug resistance. Therefore, it is in great need to develop ecologically sustainable antimicrobial agents. In the study, the minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), and action mechanism of terpinen-4-ol against S. agalactiae was investigated to evaluate antibacterial activity of terpinen-4-ol. Results showed the MIC and MBC of terpinen-4-ol were 98 and 196 µg/mL, respectively. Time-kill curves displayed that the antibacterial activity of terpinen-4-ol was in a concentration-dependent manner. Transmission electron micrographs showed that the cell membrane and wall of S. agalactiae were damaged, and plasmolysis and chromatins were inconspicuous. Release of Ca2+ and Mg2+ proved that terpinen-4-ol could increase cell membrane permeability. And the release of lactate dehydrogenase (LDH) suggested that cell wall was destroyed. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 4',6-diamidino-2-phenylindole (DAPI) staining results showed that terpinen-4-ol could affect the synthesis of protein and DNA. These results suggested that terpinen-4-ol might be used as candidate for treating S. agalactiae infection.


Assuntos
Antibacterianos/farmacologia , Streptococcus agalactiae/efeitos dos fármacos , Terpenos/farmacologia , Antibacterianos/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Cromatina/ultraestrutura , DNA Bacteriano/biossíntese , L-Lactato Desidrogenase/metabolismo , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Estrutura Molecular , Permeabilidade/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Streptococcus agalactiae/ultraestrutura , Terpenos/química
19.
Water Sci Technol ; 76(7-8): 2203-2212, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29068350

RESUMO

In this study, the chromium removal capability and photosynthetic capacity response of plants were investigated in vertical flow wetland microcosms (VFWM) treated with Cr(VI) bearing domestic sewage. Two plants, Cyperus alternifolius (C. alternifolius) and Coix lacryma-jobi L. (C. lacryma-jobi L.) grown in the VFWM enhanced the purification of Cr(VI) enriched domestic sewage. Cr concentration in the effluent fell below detection limit (<0.03 mg L-1), except for the C. alternifolius wetland treated with 40 mg L-1 Cr(VI). The biomasses of both plants species were increased at 10 and 20 mg L-1 Cr(VI) exposure but inhibited at 40 mg L-1 Cr(VI). The photosynthetic capacities of both plants were not affected at 10-40 mg L-1 Cr(VI) exposure during the days 20-60. However, they were inhibited significantly (P < 0.05) at 40 mg L-1 Cr(VI) exposure during days 80-100. These results demonstrated that a VFWM with C. alternifolius and/or C. lacryma-jobi L. was capable of maintaining its efficiency and recovering its vegetation. VFWM with C. alternifolius and/or C. lacryma-jobi L. was promising for purifying wastewater which contains low to medium concentrations of Cr(VI) (<20 mg L-1).


Assuntos
Cromo/química , Cromo/toxicidade , Coix/efeitos dos fármacos , Cyperus/efeitos dos fármacos , Esgotos/química , Poluentes Químicos da Água/toxicidade , Biomassa , Coix/metabolismo , Cyperus/metabolismo , Fotossíntese/efeitos dos fármacos , Águas Residuárias/química , Poluentes Químicos da Água/química , Áreas Alagadas
20.
J Hazard Mater ; 465: 133069, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056264

RESUMO

The occurrence of microplastics (MPs) in farmlands poses a threat to soil health and crop yield. There needs to be more research on the role of cropping patterns in the accumulation of MPs and quantizing the threat of MPs on soil health and crop yield. In this study, a field study was carried out to explore the role of cropping patterns in the accumulation of MPs in agricultural soil in Shanghai, China. Furthermore, the specific effect and importance of MPs and each soil physicochemical indicator to soil health and crop yield were clarified, and the threat of MPs in reducing soil health and crop yield was quantized. Relative lower MPs abundance was detected in Shanghai. MPs abundance in vegetable fields was significantly higher than that in orchards. The broad source of MPs, the acceleration of plastics breaking under artificial disturbance and warmer temperatures, and the block of MPs exchange could account for the quicker accumulation of MPs in vegetable fields. MPs have a negligible effect on microbial diversity and metabolic activity which plays a role in soil enzyme activity. Besides, MPs served as one of the critical factors for rice yield reduction.


Assuntos
Microplásticos , Plásticos , Fazendas , China , Solo , Verduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA