Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pain ; 20: 17448069241254201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38670551

RESUMO

It has been widely recognized that electroacupuncture (EA) inducing the release of ß-endorphin represents a crucial mechanism of EA analgesia. The arcuate nucleus (ARC) in the hypothalamus is a vital component of the endogenous opioid peptide system. Serving as an integration center, the periaqueductal gray (PAG) receives neural fiber projections from the frontal cortex, insular cortex, and ARC. However, the specific mechanisms how EA facilitates the release of ß-endorphin within the ARC, eliciting analgesic effects are yet to be elucidated. In this study, we conducted in vivo and in vitro experiments by transcriptomics, microdialysis, photogenetics, chemical genetics, and calcium imaging, combined with transgenic animals. Firstly, we detected 2 Hz EA at the Zusanli (ST36) increased the level of ß-endorphin and transcriptional level of proopiomelanocortin (POMC). Our transcriptomics profiling demonstrated that 2 Hz EA at the ST36 modulates the expression of c-Fos and Jun B in ARC brain nuclear cluster, and the transcriptional regulation of 2 Hz EA mainly occur in POMC neurons by Immunofluorescence staining verification. Meaning while, 2 Hz EA specifically activated the cAMP-PKA-CREB signaling pathway in ARC which mediating the c-Fos and Jun B transcription, and 2 Hz EA analgesia is dependent on the activation of cAMP-PKA-CREB signaling pathway in ARC. In order to investigate how the ß-endorphin produced in ARC transfer to integration center PAG, transneuronal tracing technology was used to observe the 2 Hz EA promoted the neural projection from ARC to PAG compared to 100 Hz EA and sham mice. Inhibited PAGGABA neurons, the transfer of ß-endorphin from the ARC nucleus to the PAG nucleus through the ARCPOMC-PAGGABA neural circuit. Furthermore, by manipulating the excitability of POMC neurons from ARCPOMC to PAGGABA using inhibitory chemogenetics and optogenetics, we found that this inhibition significantly reduced transfer of ß-endorphin from the ARC nucleus to the PAG nucleus and the effectiveness of 2 Hz EA analgesia in neurological POMC cyclization recombination enzyme (Cre) mice and C57BL/6J mice, which indicates that the transfer of ß-endorphin depends on the activation of POMC neurons prefect from ARCPOMC to PAGGABA. These findings contribute to our understanding of the neural circuitry underlying the EA pain-relieving effects and maybe provide valuable insights for optimizing EA stimulation parameters in clinical pain treatment using the in vivo dynamic visual investigating the central analgesic mechanism.


Assuntos
Núcleo Arqueado do Hipotálamo , Eletroacupuntura , Substância Cinzenta Periaquedutal , Pró-Opiomelanocortina , beta-Endorfina , Animais , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/genética , Substância Cinzenta Periaquedutal/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Eletroacupuntura/métodos , beta-Endorfina/metabolismo , Masculino , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Camundongos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Neurônios/metabolismo
2.
Opt Express ; 32(4): 4931-4943, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439232

RESUMO

Wide-range high-precision velocity detection with nitrogen-vacancy (NV) color center has been realized. By treating the NV color center as a mixer, the high-precision microwave measurement is realized. Through optimization of acquisition time, the microwave frequency resolution is improved to the mHz level. Combined with the frequency-velocity conversion model, velocity detection is realized in the range of 0-100 cm/s, and the velocity resolution is up to 0.012 cm/s. The maximum deviation in repeated measurements does not exceed 1/1000. Finally, combined with the multiplexed microwave reference technique, the range of velocity can be extended to 7.4 × 105 m/s. All of the results provide reference for high-precision velocity detection and play a significant role in various domains of quantum precision measurement. This study provides a crucial technical foundation for the development of high-dynamic-range velocity detectors and novel quantum precision velocity measurement technologies.

3.
Opt Express ; 32(10): 17336-17344, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858919

RESUMO

The ensemble of nitrogen-vacancy (NV) centers is widely used in quantum information transmission, high-precision magnetic field, and temperature sensing due to their advantages of long-lived state and the ability to be pumped by optical cycling. In this study, we investigate the zero-phonon line behavior of the two charge states of NV centers by measuring the photoluminescence of the NV center at 1.6 K-300 K. The results demonstrate a positional redshift, an increase in line width, and a decrease in fluorescence intensity for the ZPL of NV0 and NV- as the temperature increased. In the range of 10 K to 140 K, the peak shift with high concentrations of NV- revealed an anomaly of bandgap reforming. The peak position undergoes a blueshift and then a redshift as temperature increases. Furthermore, the transformation between NV0 and NV- with temperature changes has been obtained in diamonds with different nitrogen concentrations. This study explored the ZPL characteristics of NV centers in various temperatures, and the findings are significant for the development of high-resolution temperature sensing and high-precision magnetic field sensing in ensemble NV centers.

4.
Opt Express ; 32(3): 3184-3193, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297545

RESUMO

In this paper, we propose a method for simultaneously recovering multiple radio wave signals based on nitrogen-vacancy (NV) centers in diamond combining optically detected magnetic resonance (ODMR) spectrum. A controlled magnetic field gradient applied to the laser excitation area on the surface of diamond widens the detectable ODMR bandwidth to 200 MHz. Three different frequency-modulated (FM) signals with distinct carrier frequencies falling within the resonance frequency range are received and demodulated in real-time. Subsequently, the FM signal reception capability of this system is further investigated by measuring baseband signal frequencies ranging from 0.1 Hz to 200 Hz and adjusting the carrier power within a dynamic range from -10 dBm to 30 dBm. This proposal, which accomplishes multi-channel demodulation using a compact and single device, has potential applications in fields such as wireless communication, radar and navigation.

5.
Opt Express ; 32(4): 4756-4768, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439220

RESUMO

Tensor imaging can provide more comprehensive information about spatial physical properties, but it is a high-dimensional physical quantity that is difficult to observe directly. This paper proposes a fast-transform magnetic tensor imaging method based on the NV magnetic detection technique. The Euler deconvolution interprets the magnetic tensor data to obtain the target three-dimensional (3D) boundary information. Fast magnetic vector imaging was performed using optical detection of magnetic resonance (ODMR) to verify the method's feasibility. The complete tensor data was obtained based on the transformation of the vector magnetic imaging data, which was subsequently solved, and the contour information of the objective was restored. In addition, a fast magnetic moment judgment model and an angular transformation model of the observation space are developed in this paper to reduce the influence of the magnetic moment direction on the results and to help interpret the magnetic tensor data. Finally, the experiment realizes the localization, judgment of magnetic moment direction, and 3D boundary identification of a micron-sized tiny magnet with a spatial resolution of 10 µm, a model accuracy of 90.1%, and a magnetic moment direction error of 4.2°.

6.
Opt Express ; 32(7): 10829-10840, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38570946

RESUMO

Imaging of electronic device surface or sub-surface electromagnetic fields under operating conditions is important for device design and diagnosis. In this study, we proposed a method to characterize specific magnetic field properties of electromagnetic devices at micron-scale using a solid-state quantum sensor, namely diamond nitrogen-vacancy (NV) centers. By employing a wide-field magnetic field measurement technique based on NV centers, we rapidly obtain the first-order magnetic field distribution of anomalous regions. Furthermore, we approximate the second-order magnetic field (magnetic gradient tensor) using the differential gradient method. To visualize the electromagnetic anomalous regions boundary, we utilize the tensor invariants of the magnetic gradient tensor components, along with their nonlinear combinations. The identification error rate of the anomalous regions is within 12.5%. Additionally, the electromagnetic field of anomalous regions is simulated showing the measurement accuracy. Our study shows that the experimental results are very similar to the theoretical simulation of the electromagnetic field (error: 7%). This work is essential for advancing electromagnetic field characterization of electronic devices and the advancement of quantum magnetic sensor applications.

7.
Phytother Res ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666397

RESUMO

Our previous research confirmed that rutin reduced ventilator-induced lung injury (VILI) in mice. Ferroptosis has been reported to participate in the pathogenic process of VILI. We will explore whether rutin inhibits ferroptosis to alleviate VILI. A mouse model of VILI was constructed with or without rutin pretreatment to perform a multiomics analysis. Hematoxylin-eosin (HE) staining and transmission electron microscopy were used to evaluate lung injury in VILI mice. Dihydroethidium (DHE) staining and the malondialdehyde (MDA) and superoxide dismutase (SOD) levels were detected. Molecular docking was performed to determine the binding affinity between rutin and ferroptosis-related proteins. Western blot analysis, real-time PCR (RT-PCR) and immunohistochemical (IHC) staining were conducted to detect the expression levels of GPX4, XCT, ACSL4, FTH1, AKT and p-AKT in lung tissues. Microscale thermophoresis (MST) was used to evaluate the binding between rutin and AKT1. Transcriptomic and proteomic analyses showed that ferroptosis may play a key role in VILI mice. Metabolomic analysis demonstrated that rutin may affect ferroptosis via the AKT pathway. Molecular docking analysis indicated that rutin may regulate the expression of ferroptosis-related proteins. Moreover, rutin upregulated GPX4 expression and downregulated the expression of XCT, ACSL4 and FTH1 in the lung tissues. Rutin also increased the ratio of p-AKT/AKT and p-AKT expression. MST analysis showed that rutin binds to AKT1. Rutin binds to AKT to activate the AKT signaling pathway, contributing to inhibit ferroptosis, thus preventing VILI in mice. Our study elucidated a possible novel strategy of involving the use of rutin for preventing VILI.

8.
Sensors (Basel) ; 24(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38676230

RESUMO

This article introduces a spatial angle measuring device based on ensemble diamond nitrogen-vacancy (NV) center optical detection magnetic resonance (ODMR). This device realizes solid-state all-optical wide-field vector magnetic field measurements for solving the angles of magnetic components in space. The system uses diamond NV center magnetic microscope imaging to obtain magnetic vector distribution and calculates the spatial angles of magnetic components based on the magnetic vector distribution. Utilizing magnetism for angle measuring enables non-contact measuring, reduces the impact on the object being measured, and ensures measurement precision and accuracy. Finally, the accuracy of the system is verified by comparing the measurement results with the set values of the angle displacement platform. The results show that the measurement error of the yaw angle of the system is 1°, and the pitch angle and roll angle are 1.5°. The experimental results are in good agreement with the expected results.

9.
Int J Mol Sci ; 25(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542386

RESUMO

The extracellular matrix (ECM) within the brain possesses a distinctive composition and functionality, influencing a spectrum of physiological and pathological states. Among its constituents, perineuronal nets (PNNs) are unique ECM structures that wrap around the cell body of many neurons and extend along their dendrites within the central nervous system (CNS). PNNs are pivotal regulators of plasticity in CNS, both during development and adulthood stages. Characterized by their condensed glycosaminoglycan-rich structures and heterogeneous molecular composition, PNNs not only offer neuroprotection but also participate in signal transduction, orchestrating neuronal activity and plasticity. Interfering with the PNNs in adult animals induces the reactivation of critical period plasticity, permitting modifications in neuronal connections and promoting the recovery of neuroplasticity following spinal cord damage. Interestingly, in the adult brain, PNN expression is dynamic, potentially modulating plasticity-associated states. Given their multifaceted roles, PNNs have emerged as regulators in the domains of learning, memory, addiction behaviors, and other neuropsychiatric disorders. In this review, we aimed to address how PNNs contribute to the memory processes in physiological and pathological conditions.


Assuntos
Encéfalo , Sistema Nervoso Central , Animais , Sistema Nervoso Central/fisiologia , Encéfalo/metabolismo , Neurônios/metabolismo , Memória/fisiologia , Matriz Extracelular/metabolismo , Plasticidade Neuronal/fisiologia
10.
Funct Integr Genomics ; 23(2): 83, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36930329

RESUMO

Neurological prognostication after cardiac arrest (CA) is important to avoid pursuing futile treatments for poor outcome and inappropriate withdrawal of life-sustaining treatment for good outcome. To predict neurological outcome after CA through biomarkers in peripheral blood mononuclear cells, four datasets were downloaded from the Gene Expression Omnibus database. GSE29546 and GSE74198 were used as training datasets, while GSE92696 and GSE34643 were used as verification datasets. The intersection of differentially expressed genes and hub genes from multiscale embedded gene co-expression network analysis (MEGENA) was utilized in the machine learning screening. Key genes were identified using support vector machine recursive feature elimination (SVM-RFE), least absolute shrinkage and selection operator (LASSO) logistic regression, and random forests (RF). The results were validated using receiver operating characteristic curve analysis. An mRNA-miRNA network was constructed. The distribution of immune cells was evaluated using cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT). Five biomarkers were identified as predictors for neurological outcome after CA, with an area under the curve (AUC) greater than 0.7: CASP8 and FADD-like apoptosis regulator (CFLAR), human protein kinase X (PRKX), miR-483-5p, let-7a-5p, and let-7c-5p. Interestingly, the combination of CFLAR minus PRKX showed an even higher AUC of 0.814. The mRNA-miRNA network consisted of 30 nodes and 76 edges. Statistical differences were found in immune cell distribution, including neutrophils, NK cells active, NK cells resting, T cells CD4 memory activated, T cells CD4 memory resting, T cells CD8, B cells memory, and mast cells resting between individuals with good and poor neurological outcome after CA. In conclusion, our study identified novel predictors for neurological outcome after CA. Further clinical and laboratory studies are needed to validate our findings.


Assuntos
Parada Cardíaca , MicroRNAs , Humanos , Leucócitos Mononucleares , Parada Cardíaca/genética , Biologia Computacional , Aprendizado de Máquina
11.
Chemistry ; 29(42): e202300973, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100743

RESUMO

Electrooxidation of 5-hydroxymethylfural (HMF) into 2,5-furandicarboxylicacid (FDCA) has been regarded as a promising sustainable approach to achieve value-added chemicals. However, it is still impeded by the unsatisfactory performance of electrocatalysts. Here, Cu2 P7 -CoP heterostructure nanosheets were reported to enable powerful HMF electrooxidation. The Cu2 P7 -CoP heterostructure nanosheets were fabricated by microwave-assisted deep eutectic solvent (DES) approach, along with subsequent phosphiding. The Cu2 P7 -CoP heterostructure nanosheets enabled a superb 100 % HMF conversion at 1.43 V (vs. RHE) with 98.8 % FDCA yield and 98 % Faradaic efficiency (FE), demonstrating its promising application in HMF electrooxidation. X-ray photoelectron spectroscopy (XPS) analysis, open-circuit potential (OCP) approach and density functional theory (DFT) calculation uncovered that the electron transfer and redistribution between Cu2 P7 and CoP improved the adsorption capacity of HMF and modulated the catalytic performance. This study not only offered a powerful electrocatalyst for HMF electrooxidation, but also provided a conceptually new strategy for the heterostructure catalyst design.

12.
Appl Opt ; 62(16): 4275-4280, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37706917

RESUMO

We propose a method for microwave target source localization based on the diamond nitrogen vacancy color center. We use coherent population oscillation effect and modulation and demodulation techniques to achieve the detection of microwave intensity of microwave target sources, with a minimum detection intensity of 0.59 µW. Positioning of the microwave source was achieved within 50×100c m 2 distance from the system 1 m away using the cubic spline interpolation algorithm and minimum mean squared error. The maximum positioning error was 3.5 cm. This method provides a new, to the best of our knowledge, idea for the passive localization of microwave targets.

13.
Appl Opt ; 62(15): 3967-3975, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37706707

RESUMO

In this paper, we implement integrated magnetic flux concentrators (MFCs) combined with a multi-frequency modulation method to achieve high-magnetic-detection sensitivity using a nuclear spin on the solid nuclear spin in diamonds. First, we excited the nuclear spin in diamonds using a continuous-wave technique, and a linewidth of 1.37 MHz and frequency resolution of 79 Hz were successfully obtained, which is reduced by one order of the linewidth, and increased by 56 times in frequency resolution compared to that excited by an electron spin. The integrated high-permeability MFC was designed to magnify the magnetic field near the diamond, with a magnification of 9.63 times. Then, the multi-frequency modulation technique was used to fully excite the hyperfine energy level of Nitrogen Vacancy (NV) centers along the four axes on the diamond with MFC, and magnetic detection sensitivity of 250p T/H z 1/2 was realized. These techniques should allow designing an integrated NV magnetometer with high sensitivity in a small volume.

14.
Opt Express ; 30(22): 39877-39890, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36298930

RESUMO

The wide-field (2.42 mm × 1.36 mm, resolution: 5.04 µm) tomography imaging of double circuits is performed using nitrogen-vacancy (NV) center ensembles in a diamond. The magnetic-field distribution on the surface of the circuit produced by the lower layer is obtained. Vector magnetic superposition is used to separate the magnetic-field distribution produced by the lower layer from the magnetic-field distribution produced by two layers. An inversion model is used to perform the tomography imaging of the magnetic-field distribution on the lower layer surface. Compared with the measurements of the upper layer, the difference in the maximum magnetic-field intensity of inversion is approximately 0.4%, and the difference in the magnetic-field distribution of inversion is approximately 8%, where the depth of the lower layer is 0.32 mm. Simulations are conducted to prove the reliability of the imaging. These results provide a simple and highly accurate reference for the detection and fault diagnosis of multilayer and integrated circuits.

15.
Appl Opt ; 61(25): 7515-7520, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256057

RESUMO

Accurate detection technology of the microwave electric field is an important foundation to explore new materials, devices, and electromagnetic effects. In this paper, the design of a microwave electric field detection enhanced by a resonant cavity was proposed and experimentally verified. The simulation results show that the enhancement factor is 3.45 at the position of 3 mm from the square SRR). By combining the experimental system, the actual enhancement factor is 3.31(6), and the corresponding electric field detection sensitivity is increased from 1.02 V/m to 0.30 V/m. The proposed scheme provides certain technical support for the weak microwave electric field detection and the development of the integrated atomic microwave detection unit.

16.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498935

RESUMO

Hyperlipidemia-associated lipid disorders are considered the cause of atherosclerotic cardiovascular disease. Reverse cholesterol transport (RCT) is a mechanism by which excess peripheral cholesterol is transported to the liver and further converted into bile acid for excretion from the body in feces, which contributes to reducing hyperlipidemia as well as cardiovascular disease. We previously found that the recombinant humanized IgG1 antibody promotes macrophages to engulf lipids and increases cholesterol efflux to high-density lipoprotein (HDL) through ATP-binding cassette sub-family A1 (ABCA1), one of the key proteins related to RCT. In the present study, we explored other RCT related proteins expression on hepatocytes, including scavenger receptor class B type I (SR-BI), apolipoprotein A-I (ApoA-I), and apolipoprotein A-II (ApoA-II), and its modulation mechanism involved. We confirmed that the recombinant humanized IgG1 antibody selectively activated ERK1/2 to upregulate SR-BI, ApoA-I, and ApoA-II expression in mice liver and human hepatocellular carcinoma cell lines HepG2 cells. The rate-limiting enzymes of bile acid synthesis, including cholesterol 7α-hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1), exhibited a significant increase when treated with the recombinant humanized IgG1 antibody, as well as increased excretion of bile acids in feces. Besides, abolishment or mutation of peroxisome proliferator-activated receptor α (PPARα)/RXR binding site on SR-BI promoter eliminated SR-BI reporter gene luciferase activity even in the presence of the recombinant humanized IgG1 antibody. Knock down the neonatal Fc receptor (FcRn) on hepatocytes impaired the effect of recombinant humanized IgG1 antibody on activation of ERK1/2, as well as upregulation of SR-BI, ApoA-I, and ApoA-II expression. In conclusion, one of the mechanisms on the recombinant humanized IgG1 antibody attenuates hyperlipidemia in ApoE-/- mice model fed with high-fat-diet might be through reinforcement of liver RCT function in an FcRn-ERK1/2-PPARα dependent manner.


Assuntos
Doenças Cardiovasculares , PPAR alfa , Camundongos , Animais , Humanos , PPAR alfa/genética , PPAR alfa/metabolismo , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo , Apolipoproteína A-II/metabolismo , Imunoglobulina G/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Apolipoproteína A-I/metabolismo , Transporte Biológico , Colesterol/metabolismo , Hepatócitos/metabolismo , Ácidos e Sais Biliares
17.
Int J Mol Sci ; 23(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36233020

RESUMO

Oxidized low-density lipoprotein (oxLDL)-induced oxidative stress and apoptosis are considered as critical contributors to cardiovascular diseases. Methionine sulfoxide reductase A (MSRA) is a potent intracellular oxidoreductase and serves as an essential factor that protects cells against oxidative damage. Here, we firstly provide evidence that recombinant humanized IgG1 antibody treatment upregulated the expression of MSRA in THP-1 cells to defend against oxLDL-induced oxidative stress and apoptosis. It was also observed that the upregulation of MSRA is regulated by the forkhead box O transcription factor (FOXO1), and the acetylation of FOXO1 increased when exposed to oxLDL but declined when treated with recombinant humanized IgG1 antibody. In addition, we identified that silent information regulator 1 (SIRT1) suppresses FOXO1 acetylation. Importantly, SIRT1 or FOXO1 deficiency impaired the anti-oxidative stress and anti-apoptotic effect of recombinant humanized IgG1 antibody. Together, our results suggest that recombinant humanized IgG1 antibody exerts its anti-oxidative stress and anti-apoptotic function by upregulation of MSRA via the Sirt1-FOXO1 axis.


Assuntos
Metionina Sulfóxido Redutases , Sirtuína 1 , Apoptose , Proteína Forkhead Box O1/metabolismo , Humanos , Imunoglobulina G/metabolismo , Imunoglobulina G/farmacologia , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Macrófagos/metabolismo , Metionina Sulfóxido Redutases/metabolismo , Monócitos/metabolismo , Estresse Oxidativo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Células THP-1 , Fatores de Transcrição/metabolismo , Regulação para Cima
18.
Nanotechnology ; 32(5): 055502, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33065555

RESUMO

In this work, we propose a 10 µm-scale spin-based sensor structure, which mainly consists of a nanowire (NW) ring resonator laser, nitrogen-vacancy (NV) defects in a nanodiamond (ND) and a microwave (MW) antenna. The NW laser was bent into a ring with a gap to pump the NV defects in the ND which was assembled in the gap with the diameter of ∼8 µm. And the fluorescent light of NV defects was enhanced by the NW ring resonator about 8 times. Furthermore, the NW laser pulse was produced by the optical switch and a simple plus-sequences was designed to get the Rabi oscillation signal. Based on the Rabi oscillation, a Ramsey-type sequence was used to detect the magnetic field with the sensitivity of 83 nT √Hz-1 for our 10 µm-scale spin-based sensor structure. It proves the spin state in our structure allows for coherent spin manipulation for more complex quantum control schemes. And our structure fulfills the fundamental requirements to develop chip-scale spin-based sensors.

19.
Appl Opt ; 60(1): 125-134, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33362080

RESUMO

Imaging the high-precision magnetic distribution generated by the surface current of chips and chip-like structures is an important way to measure thermal parameters of core components. Based on a high-concentration nitrogen-vacancy color center ensemble in diamond, the imaging magnetic field distribution is performed in a wide-field microscope. The magnetic vector detection and reduction model is verified first with continuous wave optical detection of magnetic resonance technology. By systematically measuring the distribution of the electromagnetic field generated on the surface of the micro-wire under different microwave power and different laser power conditions, the imaging quality of the wide-field imaging system can be optimized by adjusting the experimental parameters. Then, the electromagnetic field distribution imaging on the wire surface under different current intensities is obtained. In this way, accurate measurement and characterization of the magnetic distribution on the surface of the micro-wire is realized. Finally, at the field of view in the range of 480µm×270µm, the magnetic intensity is an accurate characterization in 0.5-10 Gs, and the magnetic detection sensitivity can be increased from 100 to 20µT/Hz1/2. The results show the accurate magnetic distribution imaging for chips and chip-like structures, which provide a new method for chip function detection and fault diagnosis based on precision quantum measurement technology.

20.
Environ Eng Sci ; 38(7): 676-684, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34321862

RESUMO

Oxygation (O) is a water-saving and energy-saving irrigation method that can also influence the absorption of cadmium (Cd) by rice, but the related mechanism is still unclear. In this study, the relationship between O method and Fe-Mn plaque formation was tested through pot experiments. The Fe-Mn plaque content and Cd concentration were measured during different rice growth periods, and the fitted models based on their correlation were established. The results show that, Fe-Mn plaque formation was the most significant factor affecting Cd accumulation in rice under O conditions. The content of rice root Fe-Mn plaque was higher after the application of O during the filling and maturity stages of rice growth, and Fe-Mn plaque inhibited Cd accumulation in the rice roots and grains and reduced the translocation factors (TFs) from the rice dithionite-citrate-bicarbonate extract (DCB) to the roots (TFDCB-R) and from the roots to the straw (TFStraw-G). O may influence the Fe-Mn plaque formation on the root surface to impede Cd absorption by rice. This research provides theoretical support for the Cd absorption under O conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA