Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Development ; 150(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38031990

RESUMO

Balanced control of stem cell proliferation and differentiation underlines tissue homeostasis. Disruption of tissue homeostasis often results in many diseases. However, how endogenous factors influence the proliferation and differentiation of intestinal stem cells (ISCs) under physiological and pathological conditions remains poorly understood. Here, we find that the evolutionarily conserved endoplasmic reticulum membrane protein complex (EMC) negatively regulates ISC proliferation and intestinal homeostasis. Compromising EMC function in progenitors leads to excessive ISC proliferation and intestinal homeostasis disruption. Mechanistically, the EMC associates with and stabilizes Hippo (Hpo) protein, the key component of the Hpo signaling pathway. In the absence of EMC, Yorkie (Yki) is activated to promote ISC proliferation due to Hpo destruction. The EMC-Hpo-Yki axis also functions in enterocytes to maintain intestinal homeostasis. Importantly, the levels of the EMC are dramatically diminished in tunicamycin-treated animals, leading to Hpo destruction, thereby resulting in intestinal homeostasis disruption due to Yki activation. Thus, our study uncovers the molecular mechanism underlying the action of the EMC in intestinal homeostasis maintenance under physiological and pathological conditions and provides new insight into the pathogenesis of tunicamycin-induced tumorigenesis.


Assuntos
Proteínas de Drosophila , Proteínas Serina-Treonina Quinases , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Drosophila/metabolismo , Tunicamicina/metabolismo , Transativadores/metabolismo , Proliferação de Células , Proteínas Nucleares/metabolismo , Homeostase , Drosophila melanogaster/metabolismo
2.
Traffic ; 24(12): 552-563, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37642208

RESUMO

Epithelial polarity is critical for proper functions of epithelial tissues, tumorigenesis, and metastasis. The evolutionarily conserved transmembrane protein Crumbs (Crb) is a key regulator of epithelial polarity. Both Crb protein and its transcripts are apically localized in epithelial cells. However, it remains not fully understood how they are targeted to the apical domain. Here, using Drosophila ovarian follicular epithelia as a model, we show that epithelial polarity is lost and Crb protein is absent in the apical domain in follicular cells (FCs) in the absence of Diamond (Dind). Interestingly, Dind is found to associate with different components of the dynactin-dynein complex through co-IP-MS analysis. Dind stabilizes dynactin and depletion of dynactin results in almost identical defects as those observed in dind-defective FCs. Finally, both Dind and dynactin are also required for the apical localization of crb transcripts in FCs. Thus our data illustrate that Dind functions through dynactin/dynein-mediated transport of both Crb protein and its transcripts to the apical domain to control epithelial apico-basal (A/B) polarity.


Assuntos
Proteínas de Drosophila , Animais , Polaridade Celular , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Complexo Dinactina/metabolismo , Dineínas/metabolismo , Células Epiteliais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35115400

RESUMO

Stem cells constantly divide and differentiate to maintain adult tissue homeostasis, and uncontrolled stem cell proliferation leads to severe diseases such as cancer. How stem cell proliferation is precisely controlled remains poorly understood. Here, from an RNA interference (RNAi) screen in adult Drosophila intestinal stem cells (ISCs), we identify a factor, Yun, required for proliferation of normal and transformed ISCs. Yun is mainly expressed in progenitors; our genetic and biochemical evidence suggest that it acts as a scaffold to stabilize the Prohibitin (PHB) complex previously implicated in various cellular and developmental processes and diseases. We demonstrate that the Yun/PHB complex is regulated by and acts downstream of EGFR/MAPK signaling. Importantly, the Yun/PHB complex interacts with and positively affects the levels of the transcription factor E2F1 to regulate ISC proliferation. In addition, we find that the role of the PHB complex in cell proliferation is evolutionarily conserved. Thus, our study uncovers a Yun/PHB-E2F1 regulatory axis in stem cell proliferation.


Assuntos
Células-Tronco Adultas/metabolismo , Proliferação de Células/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Fator de Transcrição E2F1/metabolismo , Intestinos/metabolismo , Proibitinas/metabolismo , Animais , Animais Geneticamente Modificados , Diferenciação Celular/fisiologia , Homeostase/fisiologia , Interferência de RNA/fisiologia , Transdução de Sinais/fisiologia
4.
PLoS Genet ; 17(10): e1009834, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34644293

RESUMO

Stem cells have the potential to maintain undifferentiated state and differentiate into specialized cell types. Despite numerous progress has been achieved in understanding stem cell self-renewal and differentiation, many fundamental questions remain unanswered. In this study, we identify dRTEL1, the Drosophila homolog of Regulator of Telomere Elongation Helicase 1, as a novel regulator of male germline stem cells (GSCs). Our genome-wide transcriptome analysis and ChIP-Seq results suggest that dRTEL1 affects a set of candidate genes required for GSC maintenance, likely independent of its role in DNA repair. Furthermore, dRTEL1 prevents DNA damage-induced checkpoint activation in GSCs. Finally, dRTEL1 functions to sustain Stat92E protein levels, the key player in GSC maintenance. Together, our findings reveal an intrinsic role of the DNA helicase dRTEL1 in maintaining male GSC and provide insight into the function of dRTEL1.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Células Germinativas/fisiologia , Células-Tronco/fisiologia , Animais , Autorrenovação Celular/genética , DNA Helicases/metabolismo , Reparo do DNA/genética , Feminino , Masculino , Transdução de Sinais/genética , Transcriptoma/genética
5.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768248

RESUMO

Tissue phenotypic plasticity facilitates rapid adaptation of organisms to biotic and/or abiotic pressure. The reproductive capacity of honey bee workers (Apis mellifera) is plastic and responsive to pheromones produced by broods and the queen. Egg laying workers (ELWs), which could reactivate their ovaries and lay haploid eggs upon queen lost, have been commonly discussed from many aspects. However, it remains unclear whether midgut homeostasis in ELWs is affected during plastic changes. Here, we found that the expression of nutrition- and autophagy-related genes was up-regulated in the midguts of ELWs, compared with that in nurse workers (NWs) by RNA-sequencing. Furthermore, the area and number of autophagosomes were increased, along with significantly increased cell death in the midguts of ELWs. Moreover, cell cycle progression in the midguts of ELWs was increased compared with that in NWs. Consistent with the up-regulation of nutrition-related genes, the body and midgut sizes, and the number of intestinal proliferation cells of larvae reared with royal jelly (RJ) obviously increased more than those reared without RJ in vitro. Finally, cell proliferation was dramatically suppressed in the midguts of ELWs when autophagy was inhibited. Altogether, our data suggested that autophagy was induced and required to sustain cell proliferation in ELWs' midguts, thereby revealing the critical role of autophagy played in the intestines during phenotypic plasticity changes.


Assuntos
Autofagia , Intestinos , Abelhas/genética , Animais , Larva/fisiologia , Autofagia/genética , Adaptação Fisiológica , Proliferação de Células
6.
Dev Biol ; 476: 294-307, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33940033

RESUMO

During tumorigenesis, tumor cells interact intimately with their surrounding cells (microenvironment) for their growth and progression. However, the roles of tumor microenvironment in tumor development and progression are not fully understood. Here, using an established benign tumor model in adult Drosophila intestines, we find that non-cell autonomous autophagy (NAA) is induced in tumor surrounding neighbor cells. Tumor growth can be significantly suppressed by genetic ablation of autophagy induction in tumor neighboring cells, indicating that tumor neighboring cells act as tumor microenvironment to promote tumor growth. Autophagy in tumor neighboring cells is induced downstream of elevated ROS and activated JNK signaling in tumor cells. Interestingly, we find that active transport of nutrients, such as amino acids, from tumor neighboring cells sustains tumor growth, and increasing nutrient availability could significantly restore tumor growth. Together, these data demonstrate that tumor cells take advantage of their surrounding normal neighbor cells as nutrient sources through NAA to meet their high metabolic demand for growth and progression. Thus we provide insights into our understanding of the mechanisms underlying the interaction between tumor cells and their microenvironment in tumor development.


Assuntos
Autofagia/fisiologia , Neoplasias/genética , Microambiente Tumoral/fisiologia , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Humanos , Intestinos , Sistema de Sinalização das MAP Quinases , Neoplasias/metabolismo
7.
Cell Biol Int ; 44(3): 905-917, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31868274

RESUMO

Tissue homeostasis is controlled by the differentiated progeny of residential progenitors (stem cells). Adult stem cells constantly adjust their proliferation/differentiation rates to respond to tissue damage and stresses. However, how differentiated cells maintain tissue homeostasis remains unclear. Here, we find that heparan sulfate (HS), a class of glycosaminoglycan (GAG) chains, protects differentiated cells from loss to maintain intestinal homeostasis. HS depletion in enterocytes (ECs) leads to intestinal homeostasis disruption, with accumulation of intestinal stem cell (ISC)-like cells and mis-differentiated progeny. HS-deficient ECs are prone to cell death/stress and induced cytokine and epidermal growth factor (EGF) expression, which, in turn, promote ISC proliferation and differentiation. Interestingly, HS depletion in ECs results in the inactivation of decapentaplegic (Dpp) signaling. Moreover, ectopic Dpp signaling completely rescued the defects caused by HS depletion. Together, our data demonstrate that HS is required for Dpp signal activation in ECs, thereby protecting ECs from ablation to maintain midgut homeostasis. Our data shed light into the regulatory mechanisms of how differentiated cells contribute to tissue homeostasis maintenance.


Assuntos
Drosophila/metabolismo , Enterócitos/metabolismo , Heparitina Sulfato/fisiologia , Homeostase , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Morte Celular , Diferenciação Celular , Proliferação de Células , Citocinas/metabolismo , Proteínas de Drosophila/metabolismo , Enterócitos/citologia , Fator de Crescimento Epidérmico/metabolismo , Feminino , Intestinos/citologia
8.
Dev Biol ; 439(1): 42-51, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29679558

RESUMO

Most, if not all, stem cells reside in a defined microenvironment, called the niche. Short-ranged niche signal must be tightly controlled to be active only inside the niche to maintain the proper balance of stem cell self-renewal verse differentiation. However, how niche components restrict localized niche signal activation remains largely unknown. Here, we find that Thickveins (Tkv, a type I receptor of the Dpp signaling pathway) in cyst stem cells (CySCs) of the testis niche prevents Dpp signaling activation outside of the niche. We show that Tkv functions as Dpp trap/sink to spatially restrain Dpp signaling inside the niche. This self-restrained regulation of niche activity by Tkv in CySCs is independent of the canonical Dpp signaling pathway. Our data demonstrate the critical roles of niche components (CySCs) in the self-restrained regulation of niche activity, which could be shed light on niche activity regulation in general.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Nicho de Células-Tronco/genética , Nicho de Células-Tronco/fisiologia , Animais , Diferenciação Celular/fisiologia , Drosophila/embriologia , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Germinativas/citologia , Masculino , Proteínas Serina-Treonina Quinases/fisiologia , Receptores de Superfície Celular/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Testículo/metabolismo , Testículo/fisiologia
9.
PLoS Genet ; 11(4): e1005180, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25923769

RESUMO

The adult intestinal homeostasis is tightly controlled by proper proliferation and differentiation of intestinal stem cells. The JAK/STAT (Janus Kinase/Signal Transducer and Activator of Transcription) signaling pathway is essential for the regulation of adult stem cell activities and maintenance of intestinal homeostasis. Currently, it remains largely unknown how JAK/STAT signaling activities are regulated in these processes. Here we have identified windpipe (wdp) as a novel component of the JAK/STAT pathway. We demonstrate that Wdp is positively regulated by JAK/STAT signaling in Drosophila adult intestines. Loss of wdp activity results in the disruption of midgut homeostasis under normal and regenerative conditions. Conversely, ectopic expression of Wdp inhibits JAK/STAT signaling activity. Importantly, we show that Wdp interacts with the receptor Domeless (Dome), and promotes its internalization for subsequent lysosomal degradation. Together, these data led us to propose that Wdp acts as a novel negative feedback regulator of the JAK/STAT pathway in regulating intestinal homeostasis.


Assuntos
Diferenciação Celular/genética , Proteínas de Drosophila/genética , Mucosa Intestinal/metabolismo , Janus Quinases/genética , Proteínas de Membrana/genética , Receptores de Interleucina/genética , Animais , Proliferação de Células , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Endocitose/genética , Regulação da Expressão Gênica no Desenvolvimento , Homeostase/genética , Intestinos/crescimento & desenvolvimento , Janus Quinases/metabolismo , Lisossomos/genética , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Interleucina/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Células-Tronco
10.
Dev Biol ; 411(2): 207-216, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26845534

RESUMO

Adult stem cells or residential progenitor cells are critical to maintain the structure and function of adult tissues (homeostasis) throughout the lifetime of an individual. Mis-regulation of stem cell proliferation and differentiation often leads to diseases including cancer, however, how wildtype adult stem cells and cancer cells respond to cellular damages remains unclear. We find that in the adult Drosophila midgut, intestinal stem cells (ISCs), unlike tumor intestinal cells, are resistant to various cellular damages. Tumor intestinal cells, unlike wildtype ISCs, are easily eliminated by apoptosis. Further, their proliferation is inhibited upon autophagy induction, and autophagy-mediated tumor inhibition is independent of caspase-dependent apoptosis. Interestingly, inhibition of tumorigenesis by autophagy is likely through the sequestration and degradation of mitochondria, as compromising mitochondria activity in these tumor models mimics the induction of autophagy and increasing the production of mitochondria alleviates the tumor-suppression capacity of autophagy. Together, these data demonstrate that wildtype adult stem cells and tumor cells show dramatic differences in sensitivity to cellular damages, thus providing potential therapeutic implications targeting tumorigenesis.


Assuntos
Células-Tronco Adultas/citologia , Drosophila melanogaster/citologia , Proteínas Proto-Oncogênicas c-raf/genética , Animais , Apoptose , Autofagia , Caspases/metabolismo , Diferenciação Celular , Proliferação de Células , Cruzamentos Genéticos , Proteínas de Drosophila/metabolismo , Marcação In Situ das Extremidades Cortadas , Neoplasias Intestinais/metabolismo , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Oligomicinas/química , Proteínas Proto-Oncogênicas c-raf/metabolismo
11.
Cell Prolif ; : e13648, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987866

RESUMO

A specialised microenvironment, termed niche, provides extrinsic signals for the maintenance of residential stem cells. However, how residential stem cells maintain niche homeostasis and whether stromal niche cells could convert their fate into stem cells to replenish lost stem cells upon systemic stem cell loss remain largely unknown. Here, through systemic identification of JAK/STAT downstream targets in adult Drosophila testis, we show that Escargot (Esg), a member of the Snail family of transcriptional factors, is a putative JAK/STAT downstream target. esg is intrinsically required in cyst stem cells (CySCs) but not in germline stem cells (GSCs). esg depletion in CySCs results in CySC loss due to differentiation and non-cell autonomous GSC loss. Interestingly, hub cells are gradually lost by delaminating from the hub and converting into CySCs in esg-defective testes. Mechanistically, esg directly represses the expression of socs36E, the well-known downstream target and negative regulator of JAK/STAT signalling. Finally, further depletion of socs36E completely rescues the defects observed in esg-defective testes. Collectively, JAK/STAT target Esg suppresses SOCS36E to maintain CySC fate and repress niche cell conversion. Thus, our work uncovers a regulatory loop between JAK/STAT signalling and its downstream targets in controlling testicular niche homeostasis under physiological conditions.

12.
Front Immunol ; 15: 1354339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638428

RESUMO

Background: Lymphangiogenesis (LYM) has an important role in tumor progression and is strongly associated with tumor metastasis. However, the clinical application of LYM has not progressed as expected. The potential value of LYM needs to be further developed in lung adenocarcinoma (LUAD) patients. Methods: The Sequencing data and clinical characteristics of LUAD patients were downloaded from The Cancer Genome Atlas and GEO databases. Multiple machine learning algorithms were used to screen feature genes and develop the LYM index. Immune cell infiltration, immune checkpoint expression, Tumor Immune Dysfunction and Exclusion (TIDE) algorithm and drug sensitivity analysis were used to explore the correlation of LYM index with immune profile and anti-tumor therapy. Results: We screened four lymphangiogenic feature genes (PECAM1, TIMP1, CXCL5 and PDGFB) to construct LYM index based on multiple machine learning algorithms. We divided LUAD patients into the high LYM index group and the low LYM index group based on the median LYM index. LYM index is a risk factor for the prognosis of LUAD patients. In addition, there was a significant difference in immune profile between high LYM index and low LYM index groups. LUAD patients in the low LYM index group seemed to benefit more from immunotherapy based on the results of TIDE algorithm. Conclusion: Overall, we confirmed that the LYM index is a prognostic risk factor and a valuable predictor of immunotherapy response in LUAD patients, which provides new evidence for the potential application of LYM.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Linfangiogênese , Adenocarcinoma de Pulmão/terapia , Genes Reguladores , Imunoterapia , Neoplasias Pulmonares/terapia
13.
Front Cell Dev Biol ; 12: 1331759, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650895

RESUMO

Background: Polyamine modification patterns in lung adenocarcinoma (LUAD) and their impact on prognosis, immune infiltration, and anti-tumor efficacy have not been systematically explored. Methods: Patients from The Cancer Genome Atlas (TCGA) were classified into subtypes according to polyamine metabolism-related genes using the consensus clustering method, and the survival outcomes and immune profile were compared. Meanwhile, the geneCluster was constructed according to the differentially expressed genes (DEGs) of the subtypes. Subsequently, the polyamine metabolism-related score (PMRS) system was established using the least absolute shrinkage and selection operator (LASSO) multivariate regression analysis in the TCGA training cohort (n = 245), which can be applied to characterize the prognosis. To verify the predictive performance of the PMRS, the internal cohort (n = 245) and the external cohort (n = 244) were recruited. The relationship between the PMRS and immune infiltration and antitumor responses was investigated. Results: Two distinct patterns (C1 and C2) were identified, in which the C1 subtype presented an adverse prognosis, high CD8+ T cell infiltration, tumor mutational burden (TMB), immune checkpoint, and low tumor immune dysfunction and exclusion (TIDE). Furthermore, two geneClusters were established, and similar findings were observed. The PMRS, including three genes (SMS, SMOX, and PSMC6), was then constructed to characterize the polyamine metabolic patterns, and the patients were divided into high- and low-PMRS groups. As confirmed by the validation cohort, the high-PMRS group possessed a poor prognosis. Moreover, external samples and immunohistochemistry confirmed that the three genes were highly expressed in tumor samples. Finally, immunotherapy and chemotherapy may be beneficial to the high-PMRS group based on the immunotherapy cohorts and low half-maximal inhibitory concentration (IC50) values. Conclusion: We identified distinct polyamine modification patterns and established a PMRS to provide new insights into the mechanism of polyamine action and improve the current anti-tumor strategy of LUAD.

14.
Acta Biomater ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39067643

RESUMO

Crizotinib (CRZ), one of anaplastic lymphoma kinase tyrosine kinase inhibitors (ALK-TKIs), has emerged as a frontline treatment for ALK-positive (ALK+) lung adenocarcinoma. However, the overexpression of P-glycoprotein (P-gp, a mitochondrial adenosine triphosphate (ATP)-dependent protein) in lung adenocarcinoma lesions causes multidrug resistance and limits the efficacy of CRZ treatment. Herein, a mitochondria-targeting nanosystem, zeolitic imidazolate framework-90@indocyanine green (ZIF-90@ICG), was fabricated to intervene in mitochondria and overcome drug resistance. Due to the zinc ion (Zn2+) interference of ZIF-90 and the photodynamic therapy (PDT) of ICG, this nanosystem is well suited for damaging mitochondrial functions, thus downregulating the intracellular ATP level and inhibiting P-gp expression. In addition, systematic bioinformatics analysis revealed the upregulation of CD44 in CRZ-resistant cells. Therefore, hyaluronic acid (HA, a critical target ligand of CD44) was further modified on the surface of ZIF-90@ICG for active targeting. Overall, this ZIF-90@ICG nanosystem synergistically increased the intracellular accumulation of CRZ and reversed CRZ resistance to enhance its anticancer effect, which provides guidance for nanomedicine design to accurately target tumours and induce mitochondrial damage and represents a viable regimen for improving the prognosis of patients with ALK-TKIs resistance. STATEMENT OF SIGNIFICANCE: The original aim of our research was to combat multidrug resistance (MDR) in highly aggressive and lethal lymphoma kinase-positive (ALK+) lung adenocarcinoma. For this purpose, a cascade-targeted system was designed to overcome MDR, integrating lung adenocarcinoma-targeted hyaluronic acid (HA), mitochondrion-targeted zeolitic imidazolate framework-90 (ZIF-90), the clinically approved drug crizotinib (CRZ), and the fluorescence imaging agent/photosensitizer indocyanine green (ICG). Moreover, using a "two birds with one stone" strategy, ion interference and oxidative stress induced by ZIF-90 and photodynamic therapy (PDT), respectively, disrupt mitochondrial homeostasis, thus downregulating adenosine triphosphate (ATP) levels, inhibiting MDR-relevant P-glycoprotein (P-gp) expression and suppressing tumour metastasis. Overall, this research represents an attempt to implement the concept of MDR reversal and realize the trade-offs between MDR and therapeutic effectiveness.

15.
Medicine (Baltimore) ; 102(6): e32861, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36820598

RESUMO

Previous studies have shown that asthma is a risk factor for lung cancer, while the mechanisms involved remain unclear. We attempted to further explore the association between asthma and non-small cell lung cancer (NSCLC) via bioinformatics analysis. We obtained GSE143303 and GSE18842 from the GEO database. Lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) groups were downloaded from the TCGA database. Based on the results of differentially expressed genes (DEGs) between asthma and NSCLC, we determined common DEGs by constructing a Venn diagram. Enrichment analysis was used to explore the common pathways of asthma and NSCLC. A protein-protein interaction (PPI) network was constructed to screen hub genes. KM survival analysis was performed to screen prognostic genes in the LUAD and LUSC groups. A Cox model was constructed based on hub genes and validated internally and externally. Tumor Immune Estimation Resource (TIMER) was used to evaluate the association of prognostic gene models with the tumor microenvironment (TME) and immune cell infiltration. Nomogram model was constructed by combining prognostic genes and clinical features. 114 common DEGs were obtained based on asthma and NSCLC data, and enrichment analysis showed that significant enrichment pathways mainly focused on inflammatory pathways. Screening of 5 hub genes as a key prognostic gene model for asthma progression to LUAD, and internal and external validation led to consistent conclusions. In addition, the risk score of the 5 hub genes could be used as a tool to assess the TME and immune cell infiltration. The nomogram model constructed by combining the 5 hub genes with clinical features was accurate for LUAD. Five-hub genes enrich our understanding of the potential mechanisms by which asthma contributes to the increased risk of lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Asma , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Asma/genética , Microambiente Tumoral
16.
Nanoscale ; 15(9): 4261-4276, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36756840

RESUMO

Zinc (Zn), extolled as "the flower of life" in modern medicine, has been extensively highlighted with its physiological functions to maintain growth, development, and metabolism homeostasis. Driven by the substantial advancement of nanotechnology and oncology, Zn-involved nanomedicines integrating the intrinsic bioactivity of Zn species and the physiochemical attributes of Zn-composed nanosystems have blazed a highly efficient and relatively biosafe antineoplastic path. In this review, we aim to highlight and discuss the recent representative modalities of emerging Zn-involved oncology nanomedicine, mainly emphasizing the rational design, biological effect and biosafety, and therapeutic strategies. In addition, we provide the underlying critical obstacles and future perspectives of Zn-involved oncology nanomedicines, primarily focusing on the chances and challenges of clinical translation. Furthermore, we hope the review can give rise to opportunities within oncology nanomedicine and other biomedical fields, promoting the prosperity and progress of the "Zincic Age".


Assuntos
Nanopartículas , Neoplasias , Humanos , Nanomedicina , Zinco , Nanopartículas/uso terapêutico , Nanotecnologia , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico
17.
Crit Rev Oncol Hematol ; 191: 104136, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716517

RESUMO

Small cell lung cancer (SCLC) is one of a pathological type of lung cancer, and it is characterized by invasiveness, high malignancy and refractoriness. The mortality rate of SCLC is significantly higher than other types of lung cancer, and the treatment options for SCLC patients are limited. Delta-like ligand 3 (DLL3) is a Notch signaling ligand that plays a role in regulating the proliferation, development and metastasis of SCLC cells. Mnay studies have shown that DLL3 is overexpressed on the surface of SCLC cells, suggesting that DLL3 is a potential target for SCLC patients. A series of drug trials targeting DLL3 are underway. The Phase III clinical trials of Rova-T, a drug targeting DLL3, have not yielded the expected results. However, other drugs that target DLL3, such as AMG119, AMG757 and DLL3-targeted NIR-PIT, bring new ideas for SCLC treatment. Overall, DLL3 remains a valuable target for SCLC.

18.
J Cancer ; 14(9): 1541-1552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325062

RESUMO

Background: Nowadays, the characteristics and treatment of advanced pulmonary large cell neuroendocrine carcinoma (LCNEC) remain controversial. This study aimed to analyze the similarity of clinical characteristics, survival outcomes and treatment modalities between advanced LCNEC and advanced small cell lung cancer (SCLC) to provide more evidence for the study of advanced LCNEC. Methods: All SCLC and LCNEC patient data were obtained from the SEER database (2010-2019). Pearson's χ2 test was used to compare the differences in clinical characteristics. Propensity score matching (PSM) was utilized to balance the bias of the variables between patients. Univariate and multivariate Cox proportional hazards regression analyses were performed to identify prognostic factors. KM analysis was used to calculate survival. Results: A total of 1094 patients with IV LCNEC and 20939 patients with IV SCLC were included in this study. The demographic characteristics and tumor characteristics of IV LCNEC and IV SCLC were different (p < 0.05). After PSM, the overall survival (OS) for IV LCNEC and IV SCLC was 6.0 months, the cancer-specific survival (CSS) was 7.0 months, and there was no significant difference in OS or CSS between the two groups. Risk/protective factors for OS and CSS were similar for IV LCNEC and IV SCLC patients. Survival outcomes were similar in patients with IV LCNEC and IV SCLC with different treatment modalities; chemoradiotherapy significantly improved OS and CSS in patients with IV LCNEC (9.0 months) and SCLC (10.0 months), however, radiotherapy alone did not improve survival in patients with IV LCNEC. Conclusions: These results confirmed that the prognosis and treatment modalities are similar and that advanced LCNEC could be treated as advanced SCLC, which provide new evidence for the treatment of advanced LCNEC patients.

19.
Front Genet ; 14: 1206141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351348

RESUMO

Background: Lung cancer has a high incidence and mortality rate worldwide. Vasculogenic mimicry (VM) is a specific modality of tumor angiogenesis that could potentially be a new target for tumor therapy. The purpose of this study was to explore the role of VM-related genes in assessing the prognosis and immune landscape of lung cancer. Methods: VM-related genes were obtained from previous studies, and the expression data and clinical data of lung adenocarcinoma (LUAD) patients were obtained from the TCGA database and GEO database. We performed enrichment analysis of 24 VM-related genes and screened hub genes by constructing a protein-protein interaction network and using Cytoscape software. Subsequently, we developed the VM score based on univariate Cox regression analysis and Lasso analysis and validated the VM score on the GSE72094 dataset. In addition, we constructed a nomogram based on the VM score in the TCGA cohort. Finally, we explored the correlation between the VM score and the tumor microenvironment, immune cell infiltration, immune checkpoints, and drug sensitivity. Results: Enrichment analysis revealed that VM-related genes were associated with the HIF signaling pathway and angiogenic pathway. We developed a VM score based on 3 genes (EPHA2, LAMC2 and LOXL2) in LUAD patients. Kaplan-Meier analysis showed that the VM score was associated with poor prognosis in LUAD patients. The receiver operating characteristic curve suggested that the VM score and nomogram are valid predictors for the overall survival of LUAD patients. The VM score was significantly correlated with immune cell infiltration, such as naïve B cells, neutrophils, and eosinophils, and there was a difference in the TME between the high VM score group and the low VM score group. LUAD patients in the high VM score group were more sensitive to antitumor drugs. Conclusion: In summary, the VM score developed in this study is a valuable indicator for evaluating the prognosis and immune landscape of LUAD patients. VM may be a potential target for antitumor therapy in lung cancer.

20.
Stem Cell Reports ; 18(10): 1940-1953, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37683644

RESUMO

The maintenance of germline stem cells (GSCs) is essential for tissue homeostasis. JAK/STAT signaling maintains GSC fate in Drosophila testis. However, how JAK/STAT signaling maintains male GSC fate through its downstream targets remains poorly understood. Here, we identify p115, a tER/cis-Golgi golgin protein, as a putative downstream target of JAK/STAT signaling. p115 maintains GSC fate independent of GM130 and GRASP65. p115 localizes in cytosol, the ER and Golgi apparatus in germline cells and is required for the morphology of the ER and Golgi apparatus. Furthermore, depletion of p115 in GSCs results in aberrant spindle orientation. Mechanistically, p115 associates with and stabilizes STAT. Finally, ectopic expression of STAT completely restores GSC loss caused by p115 depletion. Collectively, JAK/STAT signaling and p115 form a feedforward loop to maintain male GSC fate. Our work provides new insights into the regulatory mechanism of how stem cell maintenance is properly controlled by JAK/STAT signaling.


Assuntos
Proteínas de Drosophila , Células Germinativas , Células-Tronco , Animais , Masculino , Drosophila melanogaster , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição STAT/metabolismo , Células-Tronco/metabolismo , Transdução de Sinais , Janus Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA