Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Am Chem Soc ; 146(25): 17517-17529, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38869959

RESUMO

Despite the widespread use of hydrophilic building blocks to incorporate 18F and improve tracer pharmacokinetics, achieving effective leaving group-mediated nucleophilic 18F-fluorination in water (excluding 18F/19F-exchange) remains a formidable challenge. Here, we present a water-compatible SN2 leaving group-mediated 18F-fluorination method employing preconjugated "AquaF" (phosphonamidic fluorides) building blocks. Among 19 compact tetracoordinated pentavalent P(V)-F candidates, the "AquaF" building blocks exhibit superior water solubility, sufficient capacity for 18F-fluorination in water, and excellent in vivo metabolic properties. Two nitropyridinol leaving groups, identified from a pool of leaving group candidates that further enhance the precursor water solubility, enable 18F-fluorination in water with a 10-2 M-1 s-1 level reaction rate constant (surpassing the 18F/19F-exchange) at room temperature. With the exergonic concerted SN2 18F-fluorination mechanism confirmed, this 18F-fluorination method achieves ∼90% radiochemical conversions and reaches a molar activity of 175 ± 40 GBq/µmol (using 12.2 GBq initial activity) in saline for 12 "AquaF"-modified proof-of-concept functional substrates and small-molecule 18F-tracers. [18F]AquaF-Flurpiridaz demonstrates significantly improved radiochemical yield and molar activity compared to 18F-Flurpiridaz, alongside enhanced cardiac uptake and heart/liver ratio in targeted myocardial perfusion imaging, providing a comprehensive illustration of "AquaF" building blocks-assisted water-compatible SN2 18F-fluorination of small-molecule radiotracers.


Assuntos
Radioisótopos de Flúor , Halogenação , Água , Radioisótopos de Flúor/química , Água/química , Animais , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/síntese química , Camundongos , Tomografia por Emissão de Pósitrons , Solubilidade , Estrutura Molecular , Traçadores Radioativos
2.
Curr Issues Mol Biol ; 46(4): 3108-3121, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38666925

RESUMO

Farnesyl pyrophosphate synthase (FPPS) catalyzes the synthesis of C15 farnesyl diphosphate (FPP) from C5 dimethylallyl diphosphate (DMAPP) and two or three C5 isopentenyl diphosphates (IPPs). FPP is an important precursor for the synthesis of isoprenoids and is involved in multiple metabolic pathways. Here, farnesyl pyrophosphate synthase from Sporobolomyces pararoseus NGR (SpFPPS) was isolated and expressed by the prokaryotic expression system. The SpFPPS full-length genomic DNA and cDNA are 1566 bp and 1053 bp, respectively. This gene encodes a 350-amino acid protein with a predicted molecular mass of 40.33 kDa and a molecular weight of 58.03 kDa (40.33 kDa + 17.7 kDa), as detected by SDS-PAGE. The function of SpFPPS was identified by induction, purification, protein concentration and in vitro enzymatic activity experiments. Structural analysis showed that Y90 was essential for chain termination and changing the substrate scope. Site-directed mutation of Y90 to the smaller side-chain amino acids alanine (A) and lysine (K) showed in vitro that wt-SpFPPS catalyzed the condensation of the substrate DMAPP or geranyl diphosphate (GPP) with IPP at apparent saturation to synthesize FPP as the sole product and that the mutant protein SpFPPS-Y90A synthesized FPP and C20 geranylgeranyl diphosphate (GGPP), while SpFPPS-Y90K hydrolyzed the substrate GGPP. Our results showed that FPPS in S. pararoseus encodes the SpFPPS protein and that the amino acid substitution at Y90 changed the distribution of SpFPPS-catalyzed products. This provides a baseline for potentially regulating SpFPPS downstream products and improving the carotenoid biosynthesis pathway.

3.
BMC Plant Biol ; 24(1): 731, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085772

RESUMO

BACKGROUND: In the field of ornamental horticulture, phenotypic mutations, particularly in leaf color, are of great interest due to their potential in developing new plant varieties. The introduction of variegated leaf traits in plants like Heliopsis helianthoides, a perennial herbaceous species with ecological adaptability, provides a rich resource for molecular breeding and research on pigment metabolism and photosynthesis. We aimed to explore the mechanism of leaf variegation of Heliopsis helianthoides (using HY2021F1-0915 variegated mutant named HY, and green-leaf control check named CK in 2020 April, May and June) by analyzing the transcriptome and metabolome. RESULTS: Leaf color and physiological parameters were found to be significantly different between HY and CK types. Chlorophyll content of HY was lower than that of CK samples. Combined with the result of Weighted Gene Co-expression Network Analysis (WGCNA), 26 consistently downregulated differentially expressed genes (DEGs) were screened in HY compared to CK subtypes. Among the DEGs, 9 genes were verified to be downregulated in HY than CK by qRT-PCR. The reduction of chlorophyll content in HY might be due to the downregulation of FSD2. Low expression level of PFE2, annotated as ferritin-4, might also contribute to the interveinal chlorosis of HY. Based on metabolome data, differential metabolites (DEMs) between HY and CK samples were significantly enriched on ABC transporters in three months. By integrating DEGs and DEMs, they were enriched on carotenoids pathway. Downregulation of four carotenoid pigments might be one of the reasons for HY's light color. CONCLUSION: FSD2 and PFE2 (ferritin-4) were identified as key genes which likely contribute to the reduced chlorophyll content and interveinal chlorosis observed in HY. The differential metabolites were significantly enriched in ABC transporters. Carotenoid biosynthesis pathway was highlighted with decreased pigments in HY individuals. These findings not only enhance our understanding of leaf variegation mechanisms but also offer valuable insights for future plant breeding strategies aimed at preserving and enhancing variegated-leaf traits in ornamental plants.


Assuntos
Metaboloma , Folhas de Planta , Transcriptoma , Folhas de Planta/metabolismo , Folhas de Planta/genética , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Pigmentação/genética
4.
J Org Chem ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39173032

RESUMO

Radioactive iodines and astatine, possessing distinct exploitable nuclear properties, play indispensable roles in the realms of nuclear imaging and therapy. Their analogous chemical characteristics shape the design, preparation, and substrate range for tracers labeled with these radiohalogens through interconnected radiosynthetic chemistry. This perspective systematically explores the labeling methods by types of halogenating reagents─nucleophilic and electrophilic─underpinning the rational design of such compounds. It delves into the rapidly evolving synthetic strategies and reactions in radioiodination and radioastatination over the past decade, comparing their intrinsic relationships and highlighting variations. This comparative analysis illuminates potential radiosynthetic methods for exploration. Moreover, stability concerns related to compounds labeled with radioactive iodines and astatine are addressed, offering valuable insights for radiochemists and physicians alike.

5.
Bioorg Med Chem Lett ; 109: 129818, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823726

RESUMO

Despite the availability of various 11C-labeled positron emission tomography (PET) tracers for assessing P-glycoprotein (P-gp) function, there are still limitations related to complex metabolism, high lipophilicity, and low baseline uptake. This study aimed to address these issues by exploring a series of customized dihydropyridines (DHPs) with enhanced stability and reduced lipophilicity as alternative PET tracers for P-gp dysfunction. Compared with verapamil and the rest DHPs, dimethyl 4-(4-fluorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (1) exhibited superior cellular uptake differences between the human gastric cancer cell line SGC7901 and its drug-resistant counterpart. [18F]1 is successfully synthesized using a novel "hot-Hantzsch" approach in 22.1 ± 0.1 % radiochemical yields. MicroPET/CT imaging demonstrated that the uptake of [18F]1 in the brains of P-gp blocked mice increased by > 3 times compared to the control group. Additionally, [18F]1 displayed favorable lipophilicity (log D = 2.3) and excellent clearance characteristics, making it a promising tracer candidate with low background noise and high contrast.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Di-Hidropiridinas , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons , Di-Hidropiridinas/química , Di-Hidropiridinas/síntese química , Di-Hidropiridinas/farmacologia , Humanos , Animais , Radioisótopos de Flúor/química , Camundongos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Linhagem Celular Tumoral , Estrutura Molecular , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacologia , Relação Estrutura-Atividade , Distribuição Tecidual
6.
Ecotoxicol Environ Saf ; 283: 116770, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39067077

RESUMO

Isotope technology is an ideal tool for tracing the sources of certain pollutants or providing insights into environmental processes. In recent years, the advent of multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has enabled the precise measurement of various metal stable isotopes. Due to the presence of "fingerprint" properties in various environmental samples, metal stable isotopes have been applied to distinguish the source of contaminants effectively and further understand the corresponding environmental processes. The environmental fate of metal elements is strongly controlled by adsorption, an essential process for the distribution of elements between the dissolved and particulate phases. The adsorption of metal elements on mineral and organic surfaces significantly affects their biogeochemical cycles in the environment. Therefore, it is crucial to elucidate the fractionation characteristics of stable metal isotopes during the adsorption process. In this review, three typical transitional metal elements were selected, considering Mo as the representative of anionic species and Fe and Zn as the representative of cationic species. For Mo, the heavier Mo isotope is preferentially adsorbed in the solution phase, pH has a more significant influence on isotope fractionation, and temperature and ionic strength are relatively insensitive. Differences in coordination environments between dissolved and adsorbed Mo during adsorption, i.e., attachment mode (inner- or outer-sphere) or molecular symmetry (e.g., coordination number and magnitude of distortion), are likely responsible for isotopic fractionation. For Fe, The study of equilibrium/kinetic Fe isotopic fractionation in aqueous Fe(II)-mineral is not simple. The interaction between aqueous Fe(II) and Fe (hydroxyl) oxides is complex and dynamic. The isotope effect is due to coupled electron and atom exchange between adsorbed Fe(II), aqueous Fe(II), and reactive Fe(III) on the surface of Fe (hydroxyl) oxide. For Zn, the heavier Fe isotope preferentially adsorbs on the solid phase, and pH and ionic strength are essential influencing factors. The difference in coordination environment may be the cause of isotope fractionation.

7.
ACS Sens ; 9(6): 2793-2800, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38820066

RESUMO

Nitric oxide (NO) plays a pivotal role as a biological signaling molecule, presenting challenges in its specific detection and differentiation from other reactive nitrogen and oxygen species within living organisms. Herein, a 18F-labeled (fluorine-18, t1/2 = 109.7 min) small-molecule tracer dimethyl 4-(4-(4-[18F]fluorobutoxy)benzyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate ([18F]BDHP) is developed based on the dihydropyridine scaffold for positron emission tomography (PET) imaging of NO in vivo. [18F]BDHP exhibits a highly sensitive and efficient C-C cleavage reaction specifically triggered by NO under physiological conditions, leading to the production of a 18F-labeled radical that is readily retained within the cells. High uptakes of [18F]BDHP are found within and around NO-generating cells, such as macrophages treated with lipopolysaccharide or benzo(a)pyrene. MicroPET/CT imaging of arthritic animal model mice reveals distinct tracer accumulation in the arthritic legs, showcasing a higher distribution of NO compared with the control legs. In summary, a specific radical-generating dihydropyridine tracer with a unique radical retention strategy has been established for the marking of NO in real-time in vivo.


Assuntos
Di-Hidropiridinas , Radioisótopos de Flúor , Óxido Nítrico , Tomografia por Emissão de Pósitrons , Animais , Óxido Nítrico/metabolismo , Óxido Nítrico/química , Camundongos , Di-Hidropiridinas/química , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos de Flúor/química , Radicais Livres/química , Células RAW 264.7
8.
Heliyon ; 10(12): e32766, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988529

RESUMO

Fungal biofilm is a microbial community composed of fungal cells and extracellular polymeric substances (EPS). In recent years, fungal biofilms have played an increasingly important role in many fields. However, there are few studies on fungal biofilms and their related applications and development are still far from enough. Therefore, this review summarizes the composition and function of EPS in fungal biofilms, and improves and refines the formation process of fungal biofilms according to the latest viewpoints. Moreover, based on the study of Saccharomyces cerevisiae and Candida albicans, this review summarizes the gene regulation network of fungal biofilm synthesis, which is crucial for systematically understanding the molecular mechanism of fungal biofilm formation. It is of great significance to further develop effective methods at the molecular level to control harmful biofilms or enhance and regulate the formation of beneficial biofilms. Finally, the quorum sensing factors and mixed biofilms formed by fungi in the current research of fungal biofilms are summarized. These results will help to deepen the understanding of the formation process and internal regulation mechanism of fungal biofilm, provide reference for the study of EPS composition and structure, formation, regulation, group behavior and mixed biofilm formation of other fungal biofilms, and provide strategies and theoretical basis for the control, development and utilization of fungal biofilms.

9.
EJNMMI Radiopharm Chem ; 9(1): 4, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38183524

RESUMO

BACKGROUND: The 18F/19F-isotope exchange method employing P(V)-centered prosthetic groups demonstrates advantages in addressing mild one-step aqueous 18F-labeling of peptides and proteins. However, the molar activity (Am) achieved through isotope exchange remains relatively low, unless employing a high initial activity of [18F]F-. To overcome this drawback, our work introduces a novel approach through a Cu-mediated direct 18F-dehydrofluorination of phosphine oxides. This method leverages the straightforward separation of the 18F-labeled product from the phosphine oxide precursors, aiming to primarily increase Am. RESULTS: Through a 19F-dehydrofluorination efficiency test, Cu(OAc)2 was identified as the optimal oxidative metal salt, exhibiting a remarkable 100% conversion within one hour. Leveraging the straightforward separation of phosphine oxide precursors and phosphinic fluoride products, the Am of an activated ester, [18F]4, sees an impressive nearly 15-fold increase compared to the 18F/19F-isotope exchange, with the same initial activity of [18F]F-. Furthermore, this Cu(II)-mediated 18F-dehydrofluorination approach demonstrates tolerance up to 20% solvent water content, which enables the practical radiosynthesis of 18F-labeled water-soluble molecules under non-drying conditions. CONCLUSIONS: The direct 18F-dehydrofluorination of phosphine oxide prosthetic groups has been successfully accomplished, achieving a high Am via Cu(II)-mediated oxidative addition and reductive elimination.

10.
Foods ; 13(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38201179

RESUMO

Functional dyspepsia (FD) is a common functional gastrointestinal disorder. The pathophysiology remains poorly understood; however, alterations in the small intestinal microbiome have been observed. Current treatments for FD with drugs are limited, and there are certain safety problems. A class of active probiotic bacteria can control gastrointestinal homeostasis, nutritional digestion and absorption, and the energy balance when taken in certain dosages. Probiotics play many roles in maintaining intestinal microecological balance, improving the intestinal barrier function, and regulating the immune response. The presence and composition of intestinal microorganisms play a vital role in the onset and progression of FD and serve as a critical factor for both regulation and potential intervention regarding the management of this condition. Thus, there are potential advantages to alleviating FD by regulating the intestinal flora using probiotics, targeting intestinal microorganisms. This review summarizes the research progress of probiotics regarding improving FD by regulating intestinal flora and provides a reference basis for probiotics to improve FD.

11.
Dalton Trans ; 53(16): 7067-7072, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38566555

RESUMO

The electrochemical reduction of CO2 to CO is a powerful approach to achieving carbon neutrality. Herein, we report a five-nuclear copper cluster-based metal-azolate framework CuTz-1 as an electrocatalyst for the electrochemical CO2 reduction reaction. It achieved a faradaic efficiency (FE) of 62.7% for yielding CO with a partial current density of -35.1 mA cm-2 in flow cell device, which can be preserved for more than ten hours with negligible changes of the current density and FE(CO). Studies of electrocatalytic mechanism studies revealed that the distance of Cu-N was increased, and the coordination number of the Cu ion was reduced, while the oxidation state of Cu was decreased after the electrocatalysis. These findings offer valuable insights into structural changes that influence the performance of the catalyst during the process of the electrochemical reduction of CO2 process.

12.
NPJ Precis Oncol ; 8(1): 100, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740834

RESUMO

Anaplastic lymphoma kinase (ALK) fusion-positive colorectal cancer (CRC) is a rare and chemotherapy-refractory subtype that lacks established and effective treatment strategies. Additionally, the efficacy and safety of ALK inhibitors (ALKi) in CRC remain undetermined. Herein, we examined a series of ALK-positive CRC patients who underwent various lines of ALKi treatment. Notably, we detected an ALK 1196M resistance mutation in a CRC patient who received multiple lines of chemotherapy and ALKi treatment. Importantly, we found that Brigatinib and Lorlatinib demonstrated some efficacy in managing this patient, although the observed effectiveness was not as pronounced as in non-small cell lung cancer cases. Furthermore, based on our preliminary analyses, we surmise that ALK-positive CRC patients are likely to exhibit inner resistance to Cetuximab. Taken together, our findings have important implications for the treatment of ALK-positive CRC patients.

13.
EJNMMI Radiopharm Chem ; 9(1): 42, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753262

RESUMO

BACKGROUND: The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biannual highlight commentary to update the readership on trends in the field of radiopharmaceutical development. MAIN BODY: This selection of highlights provides commentary on 24 different topics selected by each coauthoring Editorial Board member addressing a variety of aspects ranging from novel radiochemistry to first-in-human application of novel radiopharmaceuticals. CONCLUSION: Trends in radiochemistry and radiopharmacy are highlighted. Hot topics cover the entire scope of EJNMMI Radiopharmacy and Chemistry, demonstrating the progress in the research field in many aspects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA