RESUMO
Non-CG DNA methylation, a plant-specific epigenetic mark mainly regulated by chromomethylase (CMT), is known to play important roles in Arabidopsis thaliana. However, whether and to what extent non-CG DNA methylation modulates agronomic traits in crops remain to be explored. Here, we describe the consequences of non-CG DNA hypomethylation on development, seed composition, and yield in soybean (Glycine max). We created a Gmcmt mutant line lacking function of all four CMT genes. This line exhibited substantial hypomethylation of non-CG (CHG and CHH) sites. Non-CG hypomethylation enhanced chromatin accessibility and promoted or repressed the expression of hundreds of functionally relevant genes, including upregulation of GOLDEN-LIKE 10 (GmGLK10), which led to enhanced photosynthesis and, unexpectedly, improved nitrogen fixation efficiency. The Gmcmt line produced larger seeds with increased protein content. This study provides insights into the mechanisms of non-CG methylation-based epigenetic regulation of soybean development and suggests viable epigenetic strategies for improving soybean yield and nutritional value.
Assuntos
Metilação de DNA , Regulação da Expressão Gênica de Plantas , Glycine max , Fixação de Nitrogênio , Fotossíntese , Glycine max/genética , Glycine max/metabolismo , Glycine max/crescimento & desenvolvimento , Fotossíntese/genética , Fixação de Nitrogênio/genética , Epigênese Genética , Sementes/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Mung bean (Vigna radiata) stands as a crucial legume crop in Asia, contributing to food security. However, our understanding of the underlying genetic foundation governing domesticated agronomic traits, especially those linked to pod architecture, remains largely unexplored. In this study, we delved into the genomic divergence between wild and domesticated mung bean varieties, leveraging germplasm obtained from diverse sources. Our findings unveiled pronounced variation in promoter regions (35%) between the two mung bean subpopulations, suggesting substantial changes in gene expression patterns during domestication. Leveraging transcriptome analysis using distinct reproductive stage pods and subpopulations, we identified candidate genes responsible for pod and seed architecture development, along with Genome-Wide Association Studies (GWAS) and Quantitative Trait Locus (QTL) analysis. Notably, our research conclusively confirmed PDH1 as a parallel domesticated gene governing pod dehiscence in legumes. This study imparts valuable insights into the genetic underpinnings of domesticated agronomic traits in mung bean, and simultaneously highlighting the parallel domestication of pivotal traits within the realm of legume crops.