Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 161(5): 1175-1186, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26000486

RESUMO

The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133(+)/GFAP(-) ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133(+)/GFAP(-) quiescent cells were enriched for immune-responsive genes, as well as genes encoding receptors for angiogenic factors. Administration of vascular endothelial growth factor (VEGF) activated CD133(+) ependymal neural stem cells (NSCs), lining not only the lateral but also the fourth ventricles and, together with basic fibroblast growth factor (bFGF), elicited subsequent neural lineage differentiation and migration. This study revealed the existence of dormant ependymal NSCs throughout the ventricular surface of the CNS, as well as signals abundant after injury for their activation.


Assuntos
Epêndima/citologia , Células-Tronco Neurais/metabolismo , Antígeno AC133 , Animais , Antígenos CD/metabolismo , Diferenciação Celular , Movimento Celular , Epêndima/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Glicoproteínas/metabolismo , Camundongos , Células-Tronco Neurais/citologia , Peptídeos/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Haematologica ; 102(4): 707-718, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28126968

RESUMO

Targeting leukemia initiating cells is considered to be an effective way to cure leukemia, for which it is critical to identify novel therapeutic targets. Herein, we demonstrate that CD244, which was initially reported as a key regulator for natural killer cells, is highly expressed on both mouse and human leukemia initiating cells. Upon CD244 knockdown, human leukemia cell lines and primary leukemia cells have markedly impaired proliferation abilities both in vitro and in vivo Interestingly, the repopulation ability of both mouse and human hematopoietic stem cells is not impaired upon CD244 knockdown. Using an MLL-AF9-induced murine acute myeloid leukemia model, we show that leukemogenesis is dramatically delayed upon CD244 deletion, together with remarkably reduced Mac1+/c-Kit+ leukemia cells (enriched for leukemia initiating cells). Mechanistically, we reveal that CD244 is associated with c-Kit and p27 except for SHP-2 as previously reported. CD244 co-operates with c-Kit to activate SHP-2 signaling to dephosphorylate p27 and maintain its stability to promote leukemia development. Collectively, we provide intriguing evidence that the surface immune molecule CD244 plays an important role in the maintenance of stemness of leukemia initiating cells, but not in hematopoietic stem cells. CD244 may represent a novel therapeutic target for the treatment of acute myeloid leukemia.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Leucemia/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Transdução de Sinais , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Animais , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Humanos , Imunofenotipagem , Leucemia/genética , Camundongos , Camundongos Knockout , Modelos Biológicos , Fenótipo , Ligação Proteica , Estabilidade Proteica , Família de Moléculas de Sinalização da Ativação Linfocitária/genética
3.
Adv Biol (Weinh) ; 6(8): e2101262, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35652169

RESUMO

Chimeric antigen receptors (CAR) redirect T cells to specifically recognize and eliminate tumor cells. CAR-T therapy has achieved successful clinical outcomes, and it has been transformed into commercially available products to treat acute lymphoblastic leukemia and B cell lymphoma. These breakthroughs have motivated hundreds of CAR-T clinical trials initiated each year, with ≈900 cases registered on the ClinicalTrials website till 2021. Accumulating clinical experiences have highlighted some limitations of this strategy, e.g., relapse after complete response, poor efficacy in solid tumors, on-target off-tumor toxicities, lack of persistence, and tumor resistance. These challenges limit the therapeutic application of CAR-T cells. Multidisciplinary approaches are actively investigated to address these issues. In this review, the antigens, CAR designs, and cell sources are summarized in clinical trials from 2020 to 2021. The innovative modular and programmable designs in CAR-T cells, including advances in signaling domains, antigen-recognition domains, T cell engineering, and cell resources, are further discussed. Integrative genetic and chemical engineering strategies are promising to improve the versatility, antitumor efficacy, persistence, and safety of CAR-T cells. In the future, the next generation of CAR-T cell therapies will offer more options for patients who are refractory to standard tumor therapies.


Assuntos
Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos T
4.
J Hematol Oncol ; 9(1): 124, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27855694

RESUMO

BACKGROUND: CD274 (programmed death ligand 1, also known as B7H1) is expressed in both solid tumors and hematologic malignancies and is of critical importance for the escape of tumor cells from immune surveillance by inhibiting T cell function via its receptor, programmed death 1 (PD-1). Increasing evidence indicates that functional monoclonal antibodies of CD274 may potently enhance the antitumor effect in many cancers. However, the role of CD274 in leukemia-initiating cells (LICs) remains largely unknown. METHODS: We established an MLL-AF9-induced acute myeloid leukemia (AML) model with wild-type (WT) and CD274-null mice to elucidate the role of CD274 in the cell fates of LICs, including self-renewal, differentiation, cell cycle, and apoptosis. RNA sequencing was performed to reveal the potential downstream targets, the results of which were further validated both in vitro and in vivo. RESULTS: In silico analysis indicated that CD274 level was inversely correlated with the overall survival of AML patients. In Mac-1+/c-Kit+ mouse LICs, CD274 was expressed at a much higher level than in the normal hematopoietic stem cells (HSCs). The survival of the mice with CD274-null leukemia cells was dramatically extended during the serial transplantation compared with that of their WT counterparts. CD274 deletion led to a significant decrease in LIC frequency and arrest in the G1 phase of the cell cycle. Interestingly, CD274 is not required for the maintenance of HSC pool as shown in our previous study. Mechanistically, we demonstrated that the levels of both phospho-JNK and Cyclin D2 were strikingly downregulated in CD274-null LICs. The overexpression of Cyclin D2 fully rescued the loss of function of CD274. Moreover, CD274 was directly associated with JNK and enhanced the downstream signaling to increase the Cyclin D2 level, promoting leukemia development. CONCLUSIONS: The surface immune molecule CD274 plays a critical role in the proliferation of LICs. The CD274/JNK/Cyclin D2 pathway promotes the cell cycle entry of LICs, which may serve as a novel therapeutic target for the treatment of leukemia.


Assuntos
Antígeno B7-H1/fisiologia , Ciclo Celular , Ciclina D2/metabolismo , Leucemia Mieloide Aguda/patologia , Sistema de Sinalização das MAP Quinases , Animais , Proliferação de Células , Modelos Animais de Doenças , Humanos , Leucemia Mieloide Aguda/mortalidade , Camundongos , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA