Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Nano Lett ; 24(11): 3498-3506, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38440992

RESUMO

Solar distillation is a promising approach for addressing water scarcity, but relentless stress/strain perturbations induced by wind and waves would inevitably cause structural damage to solar absorbers. Despite notable advances in efficient solar absorbers, there have been no reports of compliant and robust solar absorbers withstanding practical mechanical impacts. Herein, an elastic and robust hydrogel absorber that exhibited a high level of evaporation performance was fabricated by introducing ion-coordinated MXene nanosheets as photothermal conversion units and mechanically enhanced fillers. The ion-coordinated MXene nanosheets acting as strong cross-linking points provided excellent elasticity and robustness to the hydrogel absorber. As a result, the evaporation rate of hydrogel absorber, with a high initial value of 2.61 kg m-2 h-1 under one sun irradiation, remained at 2.15 kg m-2 h-1 under a 100% tensile strain state and 2.40 kg m-2 h-1 after 10 000 stretching-releasing cycles. This continuous and stable water desalination approach provides a promising device for actual seawater distillation.

2.
Nano Lett ; 23(13): 6216-6225, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37341290

RESUMO

It remains a challenge to artificially fabricate fibers with the macroscopic mechanical properties and characteristics of spider silk. Herein, a covalently cross-linked double-network strategy was proposed to disrupt the inverse relation of strength and toughness in the fabrication of ultratough and superstrong artificial polymer fibers. Our design utilized a strong fishnet-like structure based on immovable cellulose nanocrystal cross-links to mimic the function of the ß-sheet nanocrystallites and a slidable mechanically interlocked network based on polyrotaxane to imitate the dissipative stick-slip motion of the ß-strands in spider silk. The resultant fiber exhibited superior mechanical properties, including gigapascal tensile strength, a ductility of over 60%, and a toughness exceeding 420 MJ/m3. The fibers also showed robust biological functions similar to those of spider silks, demonstrating mechanical enhancement, energy absorption ability, and shape memory. A composite with our artificial fibers as reinforcing fibers exhibited remarkable tear and fatigue resistance.

3.
J Clin Lab Anal ; 37(1): e24827, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36579624

RESUMO

OBJECTIVES: Numerous diseases and disorders are associated with mitochondrial DNA (mtDNA) mutations, among which m.1555A > G and m.1494C > T mutations in the 12 S ribosomal RNA gene contribute to aminoglycoside-induced and nonsyndromic hearing loss worldwide. METHODS: A total of 76,842 qualified non-invasive prenatal (NIPT) samples were subjected to mtDNA mutation and haplogroup analysis. RESULTS: We detected 181 m.1555A > G and m.1494C > T mutations, 151 of which were subsequently sequenced for full-length mitochondrial genome verification. The positive predictive values for the m.1555A > G and m.1494C > T mutations were 90.78% and 90.00%, respectively, a performance comparable to that attained with newborn hearing screening. Furthermore, mitochondrial haplogroup analysis revealed that the 12 S rRNA 1555A > G mutation was enriched in sub-haplotype D5[p = 0, OR = 4.6706(2.81-7.78)]. CONCLUSIONS: Our findings indicate that the non-invasive prenatal testing of cell-free DNA obtained from maternal plasma can successfully detect m.1555A > G and m.1494C > T mutations.


Assuntos
Aminoglicosídeos , Antibacterianos , DNA Mitocondrial , Teste Pré-Natal não Invasivo , Ototoxicidade , Feminino , Humanos , Recém-Nascido , Gravidez , Aminoglicosídeos/efeitos adversos , Antibacterianos/efeitos adversos , Análise Mutacional de DNA , DNA Mitocondrial/genética , Mutação/genética , Ototoxicidade/etiologia
4.
Nano Lett ; 22(11): 4459-4467, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35608193

RESUMO

Multimodal sensor with high sensitivity, accurate sensing resolution, and stimuli discriminability is very desirable for human physiological state monitoring. A dual-sensing aerogel is fabricated with independent pyro-piezoresistive behavior by leveraging MXene and semicrystalline polymer to assemble shrinkable nanochannel structures inside multilevel cellular walls of aerogel for discriminable temperature and pressure sensing. The shrinkable nanochannels, controlled by the melt flow-triggered volume change of semicrystalline polymer, act as thermoresponsive conductive channels to endow the pyroresistive aerogel with negative temperature coefficient of resistance of -10.0% °C-1 and high accuracy within 0.2 °C in human physiological temperature range of 30-40 °C. The flexible cellular walls, working as pressure-responsive conductive channels, enable the piezoresistive aerogel to exhibit a pressure sensitivity up to 777 kPa-1 with a detectable pressure limit of 0.05 Pa. The pyro-piezoresistive aerogel can detect the temperature-dependent characteristics of pulse pressure waveforms from artery vessels under different human body temperature states.


Assuntos
Polímeros , Condutividade Elétrica , Humanos , Monitorização Fisiológica , Temperatura
5.
Nano Lett ; 22(9): 3784-3792, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35486490

RESUMO

Silver nanowires (AgNWs) have been considered as a promising candidate for transparent stretchable conductors (TSCs). However, the strong interface mismatch of stiff AgNWs and elastic substrates leads to the stress concentration at their interface and ultimately the low stretchability and poor durability of TSCs. Here, to address the interfacial mismatch of AgNWs-based TSCs we put forward a universal interface tailoring strategy that introduces the mercapto compound as the intermediate cross-linked layer. The mercapto compound strongly interacts with the AgNWs, forming a dense protective layer on their surface to improve their corrosion resistance, and reacts with the polymer substrate, forming a buffer layer to release the concentrated stress. As a result, the optimized TSCs showed superior stretchability (160%), exceptional durability (230 000 cycles), competent optoelectrical performance (18.0 ohm·sq-1 with a transmittance of 86.5%), and prominent stability. This work provides clear guidance and a strong impetus for the development of transparent stretchable electronics.

6.
Nano Lett ; 21(2): 1047-1055, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33404256

RESUMO

Thermoelectric (TE) technology provides a new way to directly harvest and convert the heat continuously released from the human body. The greatest challenge for TE materials applied in wearable TE generators is compatible with the constantly changing morphology of the human body while offering a continuous and stable power output. Here, a stretchable carboxylic single-walled carbon nanotube (SWNT)-based TE fiber is prepared by an improved wet-spinning method. The stable Seebeck coefficient of the annealed carboxylic SWNT-based TE fiber is 44 µV/K even under the tensile strain of ∼30%. Experimental results show that the fiber can continue to generate constant TE potential when it is changed to various shapes. The new stretchable TE fiber has a larger Seebeck coefficient and more stretchability than existing TE fibers based on the Seebeck effect, opening a path to using the technology for a variety of practical applications.

7.
Nanotechnology ; 32(50)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34525468

RESUMO

Nanoscale mapping of electric polarizability in a heterogeneous dielectric material with surface irregularities is of scientific and technical significance, but remains challenging. Here, we present an approach based on intermodulation electrostatic force microscopy (EFM) in conjunction with finite element computation for precise and high-resolution mapping of polarizability in dielectric materials. Instead of using electrostatic force in conventional quantitative EFM approaches, the force gradient is acquired to achieve an unprecedented spatial resolution. In the meantime, the finite element model is applied to eliminate the interference from the heterogeneity and surface irregularity of the sample. This approach directly reveals the high polarization ability of the amorphous region in a ferroelectric, semi-crystalline polymer with significant surface roughness, i.e. poly (vinylidene fluoride-co-chlorotrifluoroethylene), in which the result is consistent with the predicted data in the latest research. This work presenting a quantitative approach to nanoscale mapping of electric polarizability with unprecedented spatial resolution may help to reveal the complex property-structure correlation in heterogeneous dielectric materials.

8.
J Nanobiotechnology ; 19(1): 273, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496881

RESUMO

The control of contagious or refractory diseases requires early, rapid diagnostic assays that are simple, fast, and easy-to-use. Here, easy-to-implement CRISPR/Cas12a-based diagnostic platform through Raman transducer generated by Raman enhancement effect, term as SERS-CRISPR (S-CRISPR), are described. The S-CRISPR uses high-activity noble metallic nanoscopic materials to increase the sensitivity in the detection of nucleic acids, without amplification. This amplification-free platform, which can be performed within 30-40 min of incubation time, is then used for detection of SARS-CoV-2 derived nucleic acids in RNA extracts obtained from nasopharyngeal swab specimens (n = 112). Compared with the quantitative reverse transcription polymerase chain reaction (RT-qPCR), the sensitivity and specificity of S-CRISPR reaches 87.50% and 100%, respectively. In general, the S-CRISPR can rapidly identify the RNA of SARS-CoV-2 RNA without amplification and is a potential strategy for nucleic acid point of care test (POCT).


Assuntos
Sistemas CRISPR-Cas/genética , Técnicas de Amplificação de Ácido Nucleico , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Análise Espectral Raman , COVID-19/diagnóstico , COVID-19/virologia , Regulação Fúngica da Expressão Gênica , Genes Virais , Humanos , RNA Viral/análise , Sensibilidade e Especificidade
9.
Nano Lett ; 20(8): 6176-6184, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32662654

RESUMO

Skin-mountable physical sensors that can individually detect mechanical deformations with high strain sensitivity within a broad working strain range and temperature variations with accurate temperature resolution are a sought-after technology. Herein, a stretchable temperature and strain dual-parameter sensor that can precisely detect and distinguish strain from temperature stimuli without crosstalk is developed, based on a printable titanium carbide (MXene)-silver nanowire (AgNW)-PEDOT:PSS-tellurium nanowire (TeNW) nanocomposite. With this dual-parameter sensor, strain and temperature are effectively transduced into electrically isolated signals through the electrically conductive MXene-AgNW and thermoelectric PEDOT:PSS-TeNW components, respectively. In addition, the synergistic effect between the MXene nanosheets and PEDOT:PSS also greatly enhances the stretchability and sensitivity of the sensing devices. These properties enable the nanocomposite to decouple responses between temperature and strain stimuli with an accurate temperature resolution of 0.2 °C and a gauge factor of up to 1933.3 in a working strain range broader than 60%.


Assuntos
Nanocompostos , Nanofios , Condutividade Elétrica , Prata , Temperatura
10.
J Am Chem Soc ; 141(30): 12064-12070, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31287954

RESUMO

Fabrication of hybrid membranes composed of porous materials embedded in polymer matrices is a subject of topical interest. Herein, we introduce a new class of hybrid membranes: hyper-cross-linked metal-organic polyhedra (HCMOPs). These membranes are based upon soluble MOPs that can serve as high-connectivity nodes in hyper-cross-linked polymer networks. HCMOPs spontaneously form macro-scale, defect-free, freestanding membranes, and, thanks to the covalent cross-linking of MOPs, the resulting membranes possess multiple functionalities: strong water permeability; self-healing ability; antimicrobial activity; and better separation and mechanical performance than pristine polyimine membranes. This study introduces a new concept for the design and fabrication of multifunctional membranes and also broadens the applications of MOPs.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Iminas/farmacologia , Estruturas Metalorgânicas/farmacologia , Polímeros/farmacologia , Antibacterianos/química , Antifúngicos/química , Cryptococcus neoformans/efeitos dos fármacos , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Iminas/química , Estruturas Metalorgânicas/química , Testes de Sensibilidade Microbiana , Polímeros/química , Saccharomyces cerevisiae/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
11.
Anal Bioanal Chem ; 409(4): 1093-1100, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27878315

RESUMO

Here, we describe the development of a triangular silver nanoprism (AgNPR) etching-based plasmonic ELISA for the colorimetric determination of Cr(III) levels in environmental water samples. This involved the creation of a novel signal generation system (substrate reaction solution) for a competitive ELISA in which hydrogen peroxide (H2O2) is used to etch triangular AgNPRs, inducing a change in color. This is achieved by controlling the H2O2 concentration that remains after degradation by catalase, which is conjugated to the secondary antibody of the ELISA. Because the degree of color change and the shift in the absorption spectrum of the substrate reaction solution are closely correlated with the Cr(III) concentration, this plasmonic ELISA can be used not only for the quantification of Cr(III) concentrations ranging from 3.13 to 50 ng/mL, with a limit of detection (LOD) of 3.13 ng/mL, but also for the visual detection (indicated by a color change from blue to mauve) of Cr(III) with a sensitivity of 6.25 ng/mL by the naked eye. Therefore, the plasmonic ELISA developed in this work represents a new strategy for heavy metal ion detection and has high potential applicability in resource-constrained areas. Graphical Abstract Schematic diagram of triangular silver nanoprism etching-based signal generation system.

12.
Anal Chem ; 87(11): 5790-6, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25928837

RESUMO

Lowering the detection limit is critical to the design of bioassays required for medical diagnostics, environmental monitoring, and food safety regulations. The current sensitivity of standard color-based analyte detection limits the further use of enzyme-linked immunosorbent assays (ELISAs) in research and clinical diagnoses. Here, we demonstrate a novel method that uses the Raman signal as the signal-generating system of an ELISA and combines surface-enhanced Raman scattering (SERS) with silver nanoparticles aggregation for ultrasensitive analyte detection. The enzyme label of the ELISA controls the dissolution of Raman reporter-labeled silver nanoparticles through hydrogen peroxide and generates a strong Raman signal when the analyte is present. Using this assay, prostate-specific antigen (PSA) and the adrenal stimulant ractopamine (Rac) were detected in whole serum and urine at the ultralow concentrations of 10(-9) and 10(-6) ng/mL, respectively. The methodology proposed here could potentially be applied to other molecules detection as well as PSA and Rac.


Assuntos
Bioensaio/métodos , Biomarcadores/sangue , Biomarcadores/urina , Nanopartículas/química , Compostos de Prata/química , Ensaio de Imunoadsorção Enzimática , Humanos , Limite de Detecção , Fenetilaminas/sangue , Antígeno Prostático Específico/sangue , Antígeno Prostático Específico/urina , Sensibilidade e Especificidade , Propriedades de Superfície
13.
Nanotechnology ; 25(49): 495501, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25410010

RESUMO

We report a simple and ultra-sensitive surface enhanced Raman scattering (SERS) strip sensor based on silver nanoparticles (AgNPs) and lateral flow immunoassays (LFIAs). LFIAs are inexpensive, simple, portable and robust, thus making them commonplace in medicine, agriculture and food safety. However, their applications are limited due to the low signal intensity of the color-formation reaction based on the label accumulation. SERS is a powerful molecular spectroscopy technique for ultra-detection, which is based on the enhancement of the inelastic scattering from molecules located near nanostructured metallic surfaces when the molecules are illuminated and the surface plasmons are excited. Because of the rapidity and robustness of LFIAs and the high sensitivity of SERS, we introduce SERS into LFIAs (SERS-LFIA). Our SERS-LFIA demonstrates fast, excellent performance and is suitable for the semiquantitative examination of ultratrace analytes (Cr(3+)), with the limit of the detection (LOD) as low as 10(-5) ng mL(-1), which is 10(5)-fold more highly sensitive than those previously used to detect Cr(3+) within 15 min.

14.
Adv Mater ; 36(15): e2309508, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38190548

RESUMO

Stretchable ionic hydrogels with superior all-round properties that can detect multimodal sensations with excellent discriminability and robustness against external disturbances are highly required for artificial electronic skinapplications. However, some critical material parameters exhibit intrinsic tradeoffs with each other for most ionic hydrogels. Here, a microphase-separated hydrogel is demonstrated by combining three strategies: (1) using of a low crosslinker/monomer ratio to obtain highly entangled polymer chains as the first network; (2) the introduction of zwitterions into the first network; (3) the synthesis of an ultrasoft polyelectrolyte as the second network. This all-round elastic ionic hydrogel exhibits a low Young's modulus (< 60 kPa), large stretchability (> 900%), high resilience (> 95%), unique strain-stiffening behavior, excellent fatigue tolerance, high ionic conductivity (> 2.0 S m⁻1), and anti-freezing capability, which have not been achieved before. These properties allow the ionic hydrogel to operate as a stretchable multimodal sensor that can detect and decouple multiple stimuli (temperature, pressure, and proximity) with excellent discriminability, high sensitivity, and strong sensing-robustness against strains or temperature perturbations. The ionic hydrogel sensor exhibits great potential for intelligent electronic skin applications such as reliable health monitoring and accurate object identification.

15.
Adv Sci (Weinh) ; 11(20): e2307376, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38468437

RESUMO

Designing autonomously oscillating materials is highly desirable for emerging smart material fields but challenging. Herein, a type of hypercrosslinked metal-organic polyhedra (HCMOPs) membranes formed by covalent crosslinking of boronic acid-modified Zr-based MOPs with polyvinyl alcohol (PVA) are rationally designed. In these membranes, MOPs serve as high-connectivity nodes and provide dynamic borate bonds with PVA in hypercrosslinked networks, which can be broken/formed reversibly upon the stimulus of water vapor. The humidity response characteristic of HCMOPs promotes their self-oscillating and self-healing properties. HCMOP membranes can realize a self-oscillating property above the water surface even after loading a cargo that is 1.5 times the weight of the membrane due to the fast adsorption and desorption kinetics. Finally, the HCMOP actuator can realize energy conversion from mechanical energy into electricity when coupled with a piezoelectric membrane. This work not only paves a new avenue to construct MOP-polymer hybrid materials but also expands the application scopes of MOPs for smart actuation devices.

16.
Nat Commun ; 15(1): 5354, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918424

RESUMO

High-sensitivity strain sensing elements with a wide strain range, fast response, high stability, and small sensing areas are desirable for constructing strain sensor arrays with high temporospatial resolution. However, current strain sensors rely on crack-based conductive materials having an inherent tradeoff between their sensing area and performance. Here, we present a molecular-level crack modulation strategy in which we use layer-by-layer assembly to introduce strong, dynamic, and reversible coordination bonds in an MXene and silver nanowire-matrixed conductive film. We use this approach to fabricate a crack-based stretchable strain sensor with a very small sensing area (0.25 mm2). It also exhibits an ultrawide working strain range (0.001-37%), high sensitivity (gauge factor ~500 at 0.001% and >150,000 at 35%), fast response time, low hysteresis, and excellent long-term stability. Based on this high-performance sensing element and facile assembly process, a stretchable strain sensor array with a device density of 100 sensors per cm2 is realized. We demonstrate the practical use of the high-density strain sensor array as a multichannel pulse sensing system for monitoring pulses in terms of their spatiotemporal resolution.

17.
Chem Biol Interact ; 393: 110947, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38479716

RESUMO

In this study, twenty-nine coumarin-3-sulfonamide derivatives, twenty-seven of which are original were designed and synthesized. Cytotoxicity assay indicated that most of these derivatives exhibited moderated to good potency against A549 cells. Among them, compound 8q showed potent inhibition against the four tested cancer cell lines, especially A549 cells with IC50 value of 6.01 ± 0.81 µM, and much lower cytotoxicity on the normal cells was observed compared to the reference compounds. Bioinformatics analysis revealed human carbonic anhydrase IX (CAIX) was highly expressed in lung adenocarcinoma (LUAD) and associated with poor prognosis. The inhibitory activity of compound 8q against CAIX was assessed by using molecular docking and molecular dynamics simulations, which revealed prominent interactions of both compound 8q and CAIX at the active site and their high affinity. The results of ELISA assays verified that compound 8q possessed strong inhibitory activity against CAIX and high subtype selectivity, and could also down-regulate the expression of CAIX in A549 cells. Furthermore, the significant inhibitory effects of compound 8q on the migration and invasion of A549 cells were also found. After treatment with compound 8q, intracellular reactive oxygen species (ROS) levels increased and mitochondrial membrane potential (MMP) decreased. Mechanistic investigation using western blotting revealed compound 8q exerted the anti-migrative and anti-invasive effects probably through mitochondria-mediated PI3K/AKT pathway by targeting CAIX. In summary, coumarin-3-sulfonamide derivatives were developed as potential and effective CAIX inhibitors, which were worthy of further investigation.


Assuntos
Inibidores da Anidrase Carbônica , Cumarínicos , Humanos , Anidrase Carbônica IX , Simulação de Acoplamento Molecular , Cumarínicos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Antígenos de Neoplasias/metabolismo , Sulfonamidas/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular
18.
J Nanosci Nanotechnol ; 13(2): 1120-4, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23646584

RESUMO

Composites of acrylonitrile butadiene styrene (ABS), epoxy and soluble cross-linked polyurethane (SCPU) with various loadings of single-walled carbon nanotubes (SWCNTs) were prepared. Their electromagnetic interference (EMI) shielding effectiveness (SE) in the frequency range of 8.2-12.4 GHz (X band) was studied. Well-dispersed SWCNT composites were created in these three representative polymer matrixes. The choice of polymer matrix greatly affects the conductivity, percolation threshold, and EMI shielding properties of the SWCNT/polymer composites. Enhanced EMI SE performances were observed for the composites with better dispersed SWCNTs. Moreover, the EMI SE performances strongly correlated with SWCNT loading in the polymer matrix. The best SWCNT dispersion was achieved in the epoxy matrix: 20-30 dB EMI SE was obtained with 15 wt% SWCNTs.

19.
Talanta ; 255: 124200, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36565525

RESUMO

Vaccination is an effective strategy to fight COVID-19. However, the effectiveness of the vaccine varies among different populations in varying immune effects. Neutralizing antibody (NAb) level is an important indicator to evaluate the protective effect of immune response after vaccination. Lateral flow immunoassay (LFIA) is a rapid, safe and sensitivity detection method, which has great potential in the detection of SARS-CoV-2 NAb. In this study, a fluorescent beads-based lateral flow immunoassay (FBs-LFIA) and a latex beads-based LFIA (LBs-LFIA) using double antigen sandwich (DAS) strategy were established to detect NAbs in the serum of vaccinated people. The limit of detection (LoD) of the FBs-LFIA was 1.13 ng mL- 1 and the LBs-LFIA was 7.11 ng mL- 1. The two LFIAs were no cross-reactive with sera infected by other pathogenic bacteria. Furthermore, the two LFIAs showed a good performance in testing clinical samples. The sensitivity of FBs-LFIA and LBs-LFIA were 97.44% (95%CI: 93.15%-99.18%) and 98.29% (95%CI: 95.84%-99.37%), and the specificity were 98.28% (95%CI: 95.37%-99.45%) and 97.70% (95%CI: 94.82%-99.06%) compared with the conventional virus neutralization test (cVNT), respectively. Notably, the LBs-LFIA was also suitable for whole blood sample, requiring only 3 µL of whole blood, which provided the possibility to detect NAbs at home. To sum up, the two LFIAs based on double antigen sandwich established by us can rapidly, safely, sensitively and accurately detect SARS-CoV-2 NAb in human serum.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Testes de Neutralização , Imunoensaio/métodos , Anticorpos Antivirais , Antígenos , Anticorpos Neutralizantes
20.
ACS Sens ; 8(5): 1950-1959, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37195005

RESUMO

Extracellular vesicles (EVs) have been widely used in liquid biopsy to diagnose and monitor cancers. However, since samples containing EVs are usually body fluids with complex components, the cumbersome separation steps for EVs during detection limit the clinical application and promotion of EV detection methods. In this study, a dyad lateral flow immunoassay (LFIA) strip for EV detection, containing CD9-CD81 and EpCAM-CD81, was developed to detect universal EVs and tumor-derived EVs, respectively. The dyad LFIA strip can directly detect trace plasma samples and effectively distinguish the cancerous sample from healthy plasma. The limit of detection for detecting universal EVs was 2.4 × 105 mL-1. The whole immunoassay can be performed in 15 min and only consumes 0.2 µL of plasma for one test. To improve the suitability of a dyad LFIA strip in complex scenarios, a smartphone-based photographic method was developed, which provided a consistency of 96.07% to a specialized fluorescence LFIA strip analyzer. In further clinical testing, EV-LFIA discriminated lung cancer patient groups (n = 25) from healthy controls (n = 22) with 100% sensitivity and 94.74% specificity at the best cutoff. The detection of EpCAM-CD81 tumor EVs (TEVs) in lung cancer plasma revealed the differences in TEVs in individuals, which reflected the different treatment effects. TEV-LFIA results were compared with CT scan findings (n = 30). The vast majority of patients with increased TEV-LFIA detection intensity had lung masses that enlarged or remained unchanged in size, which reported no response to treatment. In other words, patients who reported no response (n = 22) had a high TEV level compared with patients who reported a response to treatment (n = 8). Taken together, the developed dyad LFIA strip provides a simple and rapid platform to characterize EVs to monitor lung cancer therapy outcomes.


Assuntos
Adenocarcinoma de Pulmão , Vesículas Extracelulares , Neoplasias Pulmonares , Humanos , Molécula de Adesão da Célula Epitelial , Imunoensaio/métodos , Adenocarcinoma de Pulmão/diagnóstico , Neoplasias Pulmonares/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA