RESUMO
Organic solar cells (OSCs) processed with non-halogenated solvents usually suffer from excessive self-aggregation of small molecule acceptors (SMAs), severe phase separation and higher energy loss (Eloss), leading to reduced open-circuit voltage (Voc) and power conversion efficiency (PCE). Regulating the intermolecular interaction to disperse the aggregation and further improve the molecular packing order of SMAs would be an effective strategy to solve this problem. Here, we designed and synthesized two SMAs L8-PhF and L8-PhMe by introducing different substituents (fluorine for L8-PhF and methyl for L8-PhMe) on the phenyl end group of the inner side chains of L8-Ph, and investigated the effect of the substituents on the intermolecular interaction of SMAs, Eloss and performance of OSCs processed with non-halogenated solvents. Through single crystal analysis and theoretical calculations, it is found that compared with L8-PhF, which possesses strong and abundant intermolecular interactions but downgraded molecular packing order, L8-PhMe with the methyl substituent possesses more effective non-covalent interactions, which improves the tightness and order of molecular packing. When blending the SMAs with polymer donor PM6, the differences in intermolecular interactions of the SMAs influenced the film formation process and phase separation of the blend films. The L8-PhMe based blend film exhibits shorten film formation and more homogeneous phase separation than those of the L8-PhF and L8-Ph based ones. Especially, the OSCs based on L8-PhMe show reduced non-radiative energy loss and enhanced Voc than the devices based on the other two SMAs. Consequently, the L8-PhMe based device processed with o-xylene (o-XY) and using 2PACz as the hole transport layer (HTL) shows an outstanding PCE of 19.27 %. This study highlights that the Eloss of OSCs processed with non-halogenated solvents could be decreased through regulating the intermolecular interactions of SMAs by inner side chain modification, and also emphasize the importance of effectivity rather than intensity of non-covalent interactions introduced in SMAs on the molecular packing, morphology and PCE of OSCs.
RESUMO
While chiral molecular rotors have unique frames and cavities to possibly generate switchable chiroptical functions, it still remains a formidable challenge to precisely restrict their rotations to activate certain functions such as fluorescence as well as circularly polarized luminescence (CPL), which are strongly related to the local molecular rotations. Herein, we design a pair of enantiopure helical cage rotors, which emit light neither at the molecular state nor in the crystal or aggregation states, although they contain luminophore groups. However, upon mounting with fluoroaromatic borane (TFPB) as a molecular brake, the phenyl rotation of the helical cage can be effectively hindered and fluorescence and CPL activities of the molecular cage are switched on. Crystal structure analysis reveals that the rotation is restricted through synergistic B-O-H-N bonding and a fluoroaromatic-aromatic (ArF-Ar) dipole interaction. Moreover, the helical cages are switched on stepwise with color-variable fluorescence and CPL by the inner brake in the molecular state and the outer brake in the supramolecular assemblies, respectively. This work not only provides the design idea of chiroptical molecular rotors but also unveils how fluorescence and CPL could be generated in cage rotor systems.
RESUMO
Four examples of N,N-bis(aryl)butane-2,3-diimine-nickel(II) bromide complexes, [ArN=C(Me)-C(Me)=NAr]NiBr2 (where Ar = 2-(C5H9)-4,6-(CHPh2)2C6H2 (Ni1), Ar = 2-(C6H11)-4,6-(CHPh2)2C6H2 (Ni2), 2-(C8H15)-4,6-(CHPh2)2C6H2 (Ni3) and 2-(C12H23)-4,6-(CHPh2)2C6H2 (Ni4)), disparate in the ring size of the ortho-cycloalkyl substituents, were prepared using a straightforward one-pot synthetic method. The molecular structures of Ni2 and Ni4 highlight the variation in the steric hindrance of the ortho-cyclohexyl and -cyclododecyl rings exerted on the nickel center, respectively. By employing EtAlCl2, Et2AlCl or MAO as activators, Ni1-Ni4 displayed moderate to high activity as catalysts for ethylene polymerization, with levels falling in the order Ni2 (cyclohexyl) > Ni1 (cyclopentyl) > Ni4 (cyclododecyl) > Ni3 (cyclooctyl). Notably, cyclohexyl-containing Ni2/MAO reached a peak level of 13.2 × 106 g(PE) of (mol of Ni)-1 h-1 at 40 °C, yielding high-molecular-weight (ca. 1 million g mol-1) and highly branched polyethylene elastomers with generally narrow dispersity. The analysis of polyethylenes with 13C NMR spectroscopy revealed branching density between 73 and 104 per 1000 carbon atoms, with the run temperature and the nature of the aluminum activator being influential; selectivity for short-chain methyl branches (81.8% (EtAlCl2); 81.1% (Et2AlCl); 82.9% (MAO)) was a notable feature. The mechanical properties of these polyethylene samples measured at either 30 °C or 60 °C were also evaluated and confirmed that crystallinity (Xc) and molecular weight (Mw) were the main factors affecting tensile strength and strain at break (εb = 353-861%). In addition, the stress-strain recovery tests indicated that these polyethylenes possessed good elastic recovery (47.4-71.2%), properties that align with thermoplastic elastomers (TPEs).
RESUMO
The insertion of ionic compounds into open-cage fullerenes is a challenging task due to the electropositive nature of the cavity. The present work reports the preparation of an open-cage C60 derivative with a hydroxy group pointing towards the centre of the cavity, which can coordinate to a metal cation, thus acting as a bait/hook to trap the metal cation such as the lithium cation in neutral LiF and the beryllium cation in the cationic [BeF]+ species. Other metal salts could not be inserted under similar conditions. The structure of MF in the cage was unambiguously determined by single-crystal X-ray diffraction. Owing to its tendency to undergo polycoordination, Li+ monomer salts have not been isolated before, despite extensive research on Li bonds. The present results provide a unique example of a Li bond.
RESUMO
The unprecedented development of perovskite solar cells (PSCs) makes them one of the most promising candidates for terawatt-scale green energy production with low cost. However, the high boiling point solvents during the solution-processed film deposition cause anisotropic crystal growth and toxic solvent vapor during high-throughput manufacturing. Here, a dual-component green solvent consisting of isopropyl acetate and acetonitrile is proposed to form a volatile perovskite precursor, which can realize the high-quality perovskite thin film deposition by intermediate phase regulation. A room-temperature stable perovskite intermediate phase is constructed with the engagement of isopropyl acetate as co-solvent, which suppresses the exploding nucleation rate in volatile perovskite precursor, providing a fine grain growth rate and wide processing window in scalable film deposition. The corresponding PSCs fabricated by blade coating without anti-solvents or gas quenching achieve power conversion efficiency (PCE) of 16.37 % and 15.29 % for the areas of 14.08â cm2 and 37.83â cm2 , respectively.
RESUMO
Correction for 'A hexagonal Ni6 cluster protected by 2-phenylethanethiol for catalytic conversion of toluene to benzaldehyde' by Anthony M. S. Pembere et al., Phys. Chem. Chem. Phys., 2019, 21, 17933-17938.
RESUMO
By dealing CrCl3â3THF with the corresponding ligands (L1-L5), an array of fluoro-substituted chromium (III) chlorides (Cr1-Cr5) bearing 2-[1-(2,4-dibenzhydryl-6-fluoro- phenylimino)ethyl]-6-[1-(arylimino)ethyl]pyridine (aryl = 2,6-Me2Ph Cr1, 2,6-Et2Ph Cr2, 2,6-iPr2Ph Cr3, 2,4,6-Me3Ph Cr4, 2,6-Et2-4-MePh Cr5) was synthesized in good yield and validated via Fourier Transform Infrared (FT-IR) spectroscopy and elemental analysis. Besides the routine characterizations, the single-crystal X-ray diffraction study revealed the solid-state structures of complexes Cr2 and Cr4 as the distorted-octahedral geometry around the chromium center. Activated by either methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), all the chromium catalysts exhibited high activities toward ethylene polymerization with the MMAO-promoted polymerizations far more productive than with MAO (20.14 × 106 g (PE) mol-1 (Cr) h-1 vs. 10.03 × 106 g (PE) mol-1 (Cr) h-1). In both cases, the resultant polyethylenes were found as highly linear polyethylene waxes with low molecular weights around 1-2 kg mol-1 and narrow molecular weight distribution (MWD range: 1.68-2.25). In general, both the catalytic performance of the ortho-fluorinated chromium complexes and polymer properties have been the subject of a detailed investigation and proved to be highly dependent on the polymerization reaction parameters (including cocatalyst type and amount, reaction temperature, ethylene pressure and run time).
Assuntos
Cloretos/química , Cromo/química , Compostos Organometálicos/química , Polietilenos/química , Polímeros/química , Piridinas/química , Ceras/química , Peso MolecularRESUMO
Circularly polarized luminescence (CPL) is attractive in understanding the excited-state chirality and developing advanced materials. Herein, we propose a chiral reticular self-assembly strategy to unite achiral AIEgens, chirality donors, and metal ions to fabricate optically pure AIEgen metal-organic frameworks (MOFs) as efficient CPL materials. We have found that CPL activity of the single-crystal AIEgen MOF was generated by the framework-enabled strong emission from AIEgens and through-space chirality transfer from chirality donors to achiral AIEgens via metal-ion bridges. For the first time, a dual mechano-switched blue and red-shifted CPL activity was achieved via ultrasonication and grinding, which enabled the rotation or stacking change of AIEgen rotors with the intact homochiral framework. This work provided not only an insightful view of the aggregation induced emission (AIE) mechanism, but also an efficient and versatile strategy for the preparation of stimuli-responsive CPL materials.
RESUMO
We have synthesized single crystals of a 2-phenylethanethiol-protected Ni6 nanocluster, namely Ni6(C8H9S)12, which shows a hexagonal metallic core structure and reasonable stability. Interestingly this cluster is found to be an excellent candidate for the catalytic oxidation of toluene to benzaldehyde, with 100% conversion and 91% selectivity, showing application potential as an aromatic aldehyde in industry. Using DFT calculations, we rationalize the catalytic reaction mechanism for the conversion of toluene to benzaldehyde, and demonstrate that the presence of H2O2 initiates the Ni6 cluster via a highly exothermic step to form a Ni6O* intermediate which then results in active sites for the oxidation of toluene. What is interesting is that the likely steric geometry matching of the six-ring Ni6 core, a dozen phenylethanethiol ligands and the aromatic reactant toluene could attain a synergistic effect to facilitate the production of benzaldehyde free of catalyst support.
RESUMO
Solid state emissive materials with high quantum yields and tunable emissions are desirable for various applications. A new TPE derivative (1) with two carbazole moieties and two cyano groups is reported, which shows typical aggregation induced emission behavior. Four crystals 1a, 1b, 1c, and 1d are obtained after crystallization from N,N-dimethylformamid (DMF), trichloromethane (CHCl3 ), tetrahydrofuran (THF), and dichloromethane (CH2 Cl2 ), respectively. Crystal structural analyses reveal that (i) molecules of 1 co-crystallize with DMF, CHCl3 , THF, and CH2 Cl2 in 1a, 1b, 1c, and 1d, respectively, and (ii) conformations of 1 are different within 1a, 1b, 1c, and 1d, and compound 1 within crystal 1a adopts the most twisting conformation. Crystalline solids 1a, 1b, 1c, and 1d exhibit high emission quantum yields up to 0.65, but their emission colors are varied from blue to green. In comparison, the amorphous solid of 1 is yellow-emissive with emission maximum at 542 nm. Moreover, the blue- or green-emissive crystalline solids and the yellow-emissive amorphous solid can be inter-converted by the grinding of crystalline solids and exposure of the amorphous solid to vapors of appropriate solvents. It is also demonstrated that microrods of 1a, 1b, and 1d show typical optical waveguiding behavior.
RESUMO
A new pair of plladium complexes (Pd4 and Pd5) ligated with constrained N-(5,6,7-trihydroquinolin-8-ylidene)arylamine ligands have been prepared and well characterized by ¹H-, 13C-NMR and FTIR spectroscopies as well as elemental analysis. The molecular structure of Pd4 and Pd5 in solid state have also been determined by X-ray diffraction, showing slightly distorted square planar geometry around the palladium metal center. All complexes Pd1-Pd5 are revealed highly efficient catalyst in methyl acrylate (MA) polymerization as well as methyl acrylate/norbornene (MA/NB) copolymerization. In the case of MA polymerization, as high as 98.4% conversion with high molecular weight up to 6282 kg·mol-1 was achieved. Likewise, Pd3 complex has good capability to incorporate about 18% NB content into MA polymer chains. Furthermore, low catalyst loadings (0.002 mol %) of Pd4 or Pd5 are able to efficiently mediate the coupling of haloarenes with styrene affording up to 98% conversion.
Assuntos
Acrilatos/química , Norbornanos/química , Paládio/química , Polímeros/química , Catálise , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo , Difração de Raios XRESUMO
In α-diimine nickel catalyst-mediated ethylene polymerization, adjusting catalytic parameters such as steric and electronic factors, as well as spectator ligands, offers an intriguing approach for tailoring the thermal and physical properties of the resulting products. This study explores two sets of C2-symmetric α-diimine nickel complexes-nickel bromide and nickel chloride-where ortho-steric and electronic substituents, as well as nickel halide, were varied to regulate simultaneously chain walking, chain transfer, and the properties of the polymers produced. These complexes were activated in situ with Et2AlCl, resulting in exceptionally high catalytic activities (in the level of 106-107 g (PE) mol-1 (Ni) h-1) under all reaction conditions. Nickel bromide complexes, with higher ortho-steric hindrance, exhibited superior catalytic activity compared to their less hindered counterparts, whereas the reverse was observed for complexes containing chloride. Increased steric hindrance in both sets of complexes facilitated higher polymer molecular weights and promoted chain walking reactions at lower reaction temperature (40 °C), while the effect became less pronounced at higher temperature (100 °C). However, the electron-withdrawing effect of ortho-substituents hindered the rate of monomer insertion, chain propagation, and chain walking reactions, leading to the synthesis of semi-crystalline polyethylene with an exceptionally high melt temperature of 134.6 °C and a high crystallinity of up to 31.9%. Most importantly, nickel bromide complexes demonstrated significantly higher activity compared to their chloride counterparts, while the latter yielded polymers with higher molecular weights and increased melt temperatures. These high molecular weights, coupled with controlled branching degrees, resulted in polyethylenes with excellent tensile strength (up to 13.9 MPa) and excellent elastic properties (up to 81%), making them suitable for a broad range of applications.
RESUMO
Interactions between lone pairs and aromatic π systems are significant across biology and self-assembled materials. Herein, employing an achiral confinement metal-organic framework (MOF) encapsulates guest molecules, it is successfully realized that lone pair (lp)-π interaction induces fluorescence "turn-on" and circularly polarized luminescence for the first time. The MOFs synthesized based on naphthalenediimide show nearly non-emissive, which can be light-up by introducing acetone or ester guests containing lone pairs-π interaction. Furthermore, the introduction of a series of lp-rich chiral esters induces supramolecular chirality as well as circularly polarized luminescence in achiral MOFs, while also observing chiral adaptability. This work first demonstrates the luminescence and chiral induction via lone pair electrons-π interactions, presenting a fresh paradigm for the advancement of chiroptical materials.
RESUMO
Macrocyclic conformations play a crucial role in regulating their properties. Our understanding of the determinants to control macrocyclic conformation interconversion is still in its infancy. Here we present a macrocycle, octamethyl cyclo[4](1,3-(4,6)-dimethylbenzene)[4]((4,6-benzene)(1,3-dicarboxylate) (OC-4), that can exist at 298 K as two stable atropisomers with C2v and C4v symmetry denoted as C2v-OC-4 and C4v-OC-4, respectively. Heating induces the efficient stepwise conversion of C2v- to C4v-OC-4 via a Cs-symmetric intermediate (Cs-OC-4). It differs from the typical transition state-mediated processes of simple C-C single bond rotations. Hydrolysis and further esterification with a countercation dependence promote the generation of C2v- and Cs-OC-4 from C4v-OC-4. In contrast to C2v-OC-4, C4v-OC-4 can bind linear guests to form pseudo-rotaxans, or bind C60 or C70 efficiently. The present study highlights the differences in recognition behavior that can result from conformational interconversion, as well as providing insights into the basic parameters that govern coupled molecular rotations.
RESUMO
The fluoro-substituted 2,6-bis(arylimino)pyridine dichlorocobalt complexes, [2-{CMeN(2,6-(Ph2CH)2-3,4-F2C6H)}-6-(CMeNAr)C5H3N]CoCl2 (Ar = 2,6-Me2C6H3 Co1, 2,6-Et2C6H3Co2, 2,6-iPr2C6H3Co3, 2,4,6-Me3C6H2Co4, 2,6-Et-4-MeC6H2Co5), were synthesized in good yield from the corresponding unsymmetrical N,N,N'-ligands, L1-L5. Besides characterization of Co1-Co5 by FT-IR spectroscopy, 19F NMR spectroscopy and elemental analysis, the molecular structures of Co2 and Co5 were also determined highlighting the unsymmetrical nature of the terdentate ligand and the pseudo-square pyramidal geometry about the metal center. When either MAO or MMAO were employed as activators, Co1-Co5 were able to achieve a wide range of catalytic activities for ethylene polymerisation. Co5/MAO exhibited the highest activity of the study at 60 °C (7.6 × 106 g PE mol-1 (Co) h-1) which decreased to 3.3 × 106 g PE mol-1 (Co) h-1 at 80 °C. In addition, it was found that the polymerisation activity increased as the steric hindrance imparted by the ortho groups was enhanced (for MMAO: Co3 > Co5 > Co2 > Co1 > Co4), a finding that was supported by DFT calculations. Furthermore, it was shown that particularly high molecular weight polyethylene could be generated (up to 483.8 kg mol-1) when using Co5/MMAO at 30 °C, while narrow dispersities (M w/M n range: 1.8-4.7) and high linearity (T m > 131.4 °C) were a feature of all polymers produced. By comparison of Co3 with its non-fluorinated analogue using experimental data and DFT calculations, the substitution of fluorides at the meta- and para-positions was demonstrated to boost catalytic activity and improve thermal stability.
RESUMO
In this work, fluorinated 2,6-bis(arylimino)pyridyl iron(II) complexes, [2-[CMeN{2,4-{(4-FC6H4)2CH}2-6-F}]-6-(CMeNAr)C5H3N]FeCl2 (Ar = 2,6-Me2C6H3Fe1, 2,6-Et2C6H3Fe2, 2,6-iPr2C6H3Fe3, 2,4,6-Me3C6H2Fe4, and 2,6-Et2-4-MeC6H2Fe5) and [2-[CMeN{2-{(4-FC6H4)2CH}-4-{(C6H5)CHAr'}-6-F}]-6-(CMeN(2,6-iPr2C6H3))C5H3N]FeCl2 (Ar' = 3-{(4-FC6H4)2CH}2-4-NH2-5-FC6H2Fe6), verified with different steric substituents, were synthesized and characterized. The molecular structures of Fe2 and Fe3 were determined by X-ray diffraction, revealing a pseudo-square-pyramidal geometry. High activities were achieved toward ethylene polymerization in each iron complex case. The sterically least demanding ligand enhanced the activity of its complex Fe1 with the highest activity up to 16.8 × 106 g of PE (mol of Fe)-1 h-1at 70 °C, while the bulkiest ligand led to the formation of the highest molecular weight of the resulting polyethylene using Fe6. Generally, the resulting polyethylenes are highly linear and most of them have a tendency to display bimodal distributions by virtue of the presence of multiple sites or competing chain transfer reactions. End-group analysis of polyethylenes confirms that the end groups include both unsaturated vinyl-end groups and saturated n-propyl or i-butyl, revealing the co-existence of two chain termination pathways including primary chain transfer to aluminium and secondary ß-H transfer. The chain termination processes were interpreted with the 1D sequence inverse-gated decoupled 13C NMR measurement of the resulting polyethylenes and DFT calculations along with the relevant polymerization mechanism.
RESUMO
The following family of N,N-diaryl-2,3-dimethyl-1,4-diazabutadienes, ArN[double bond, length as m-dash]C(Me)C(Me)[double bond, length as m-dash]NAr (Ar = 2,6-Me2-4-{CH(4-FC6H4)2}C6H2L1, 2-Me-6-Et-4-{CH(4-FC6H4)2}C6H2L2, 2,4-{CH(4-FC6H4)2}2-6-MeC6H2L3, 2,4-{CH(4-FC6H4)2}2-6-EtC6H2L4, 2,4-{CH(4-FC6H4)2}2-6-iPrC6H2L5), each incorporating para-substituted 4,4-difluorobenzhydryl groups but differing in the ortho-pairing, have been synthesized and used as precursors to their respective nickel(ii) bromide complexes, Ni1-Ni5. Compound characterization has been achieved through a combination of FT-IR, multinuclear NMR spectroscopy (1H, 13C, 19F) and elemental analysis. In addition, L1, Ni1 and Ni5 have been structurally characterized with Ni1 and Ni5 revealing similarly distorted tetrahedral geometries about nickel but with distinct differences in the steric protection offered by the ortho-substituents. All nickel complexes, under suitable activation, showed high activity for ethylene polymerization with a predilection towards forming branched high molecular weight polyethylene with narrow dispersity. Notably the most sterically bulky Ni5, under activation with either EtAlCl2, Et2AlCl or EASC, was exceptionally active (0.9-1.0 × 107 g of PE per (mol of Ni) per h) at an operating temperature of 40 °C. Furthermore, the polyethylene generated displayed molecular weights close to one million g mol-1 (M w range: 829-922 kg mol-1) with high branching densities (86-102/1000 carbons) and a selectivity for short chain branches (% Me = 94.3% (EtAlCl2), 87.2% (Et2AlCl), 87.7% (EASC)). Further analysis of the mechanical properties of the polymers produced at 40 °C and 50 °C using Ni5 highlighted the key role played by crystallinity (X c) and molecular weight (M w) on tensile strength (σ b) and elongation at break (ε b). In addition, stress-strain recovery tests reveal these high molecular weight polymers to exhibit characteristics of thermoplastic elastomers (TPEs).
RESUMO
A series of spiro-phenanthrene-monoketone/OH derivatives (L1-L6) were synthesized and fully characterized with 1H/13C NMR spectroscopy and elemental analyses. By treating ligands with AlMe3, oxygen-bridged binuclear aluminum complexes (Al1-Al6) were isolated and characterized by 1H/13C NMR spectroscopy. The molecular structures of ligands (L2, L4 and L5) and complex Al1 were determined by single crystal X-ray diffraction. In the presence of benzyl alcohol (BnOH), these aluminum complexes demonstrated high efficiency towards the ring-opening polymerization of ε-caprolactone (ε-CL), resulting in PCL in a linear manner with the BnO-end group. In addition, complexes Al1 and Al5 exhibited good catalytic activities even without BnOH. Moreover, complexes Al3 and Al6 with the bulkier substituent of iPr at the ortho-position of the arylamines demonstrated better catalytic activities than the analogs. Moreover, substituents on the backbone also affected catalytic behaviors.
RESUMO
In the present work, four new mono(imino)pyridine ligands, 2-((2,4-bis(bis(4-R-phenyl)methyl)-6-fluorophenylimino)methyl)pyridine (R = H, L1; R = OCH3, L2; R = F, L3) and 2-((2-(bis(4-fluorophenyl)methyl)-4-((3-(bis(4-fluorophenyl)methyl)-4-amine-5-fluoro-phenyl)(phenyl)methyl)-6-fluorophenylimino)methyl)pyridine (L4), have been designed in good yields. Additionally, three novel benzhydryl-bridged bis(imino)pyridine ligands, 2-(2-(bis(4-R-phenyl)methyl)-6-fluoro-phenylimino)pyridine (R = H, L5; R = OCH3, L6; R = F, L7), were also prepared for comparison. All these organic compounds have been characterized by FT-IR analysis, 1H/13C NMR spectroscopy, and elemental analysis. The treatment of L1-L7 with nickel halides afforded the corresponding monometallic (Ni1-Ni4) and bimetallic (Ni5-Ni7) nickel complexes in moderate to good overall yields. Upon activation with methylaluminoxane (MAO), Ni4 Cl showed the highest activity up to 8.3 × 106 g of polyethylene (PE) (mol of Ni)-1 h-1 among Ni1-Ni7 for ethylene polymerization. In all cases, unsaturated PEs with low molecular weights (0.7-13.3 kg mol-1) were produced effectively. The introduction of remote para-substituents into the benzhydryl groups showed a beneficial effect on catalytic activity with the overall activities following the order of Ni-F > Ni-OCH3 > Ni-H. In addition, these para-substituents were also found to affect not only the catalytic performance of catalysts but also the branching content of the PE product. Generally, the resultant PE waxes were moderately branched and contained both terminal vinyls (-CH=CH2) and internal vinylenes (-CH=CH-) while with different ratios of vinyls to vinylenes. Notably, the polymers produced using para-methoxy-substituted Ni2/MAO and Ni6/MAO possessed the least branching content and uniquely high vinyl contributions.
RESUMO
Unsymmetrical 2-(1-(2,4-dibenzhydryl-6-fluorophenylimino)ethyl)-6-(1-alkylphenyl-imino)ethyl)pyridine compounds (Ar = 2,6-Me2C6H3 in L1; 2,6-Et2C6H3 in L2; 2,6- i Pr2C6H3 in L3; 2,4,6-Me3C6H2 in L4; 2,6-Et2-4-Me-C6H2 in L5) were prepared and characterized. The treatment of CoCl2 with the compounds L1-L5 afforded the corresponding cobalt complexes Co1-Co5 in excellent yields. The molecular structures of Co3 and Co4 were determined by single-crystal X-ray diffraction, revealing the distorted-square-pyramidal geometry with three nitrogen atoms and two chlorine atoms around the cobalt center. Compared with previous bis(imino)pyridylcobalt analogues, all of the cobalt precatalysts displayed exceptionally higher activities toward ethylene polymerization with 1.32 × 107 g (PE) mol-1 (Co) h-1 at 60 °C in the presence of a co-catalyst MAO or MMAO. These cobalt catalysts produced highly linear polyethylene (PE) waxes with vinyl end groups and low molecular weight (M w up to 8.23 kg mol-1) along with a relatively lower melting point (all-round T ms < 128 °C). The narrow dispersity of resultant polyethylenes indicated the single-site active species of the catalytic system.