Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genome Res ; 33(10): 1818-1832, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37730437

RESUMO

The subventricular zone (SVZ) is a neurogenic niche that contributes to homeostasis and repair after brain injury. However, the effects of mild traumatic brain injury (mTBI) on the divergence of the regulatory DNA landscape within the SVZ and its link to functional alterations remain unexplored. In this study, we mapped the transcriptome atlas of murine SVZ and its responses to mTBI at the single-cell level. We observed cell-specific gene expression changes following mTBI and unveiled diverse cell-to-cell interaction networks that influence a wide array of cellular processes. Moreover, we report novel neurogenesis lineage trajectories and related key transcription factors, which we validate through loss-of-function experiments. Specifically, we validate the role of Tcf7l1, a cell cycle gene regulator, in promoting neural stem cell differentiation toward the neuronal lineage after mTBI, providing a potential target for regenerative medicine. Overall, our study profiles an SVZ transcriptome reference map, which underlies the differential cellular behavior in response to mTBI. The identified key genes and pathways that may ameliorate brain damage or facilitate neural repair serve as a comprehensive resource for drug discovery in the context of mTBI.


Assuntos
Lesões Encefálicas Traumáticas , Células-Tronco Neurais , Animais , Camundongos , Transcriptoma , Células-Tronco Neurais/metabolismo , Neurônios , Diferenciação Celular , Neurogênese/fisiologia , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo
2.
BMC Genomics ; 25(1): 142, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317084

RESUMO

Whole-exome sequencing (WES) is widely used to diagnose complex genetic diseases and rare conditions. The implementation of a robust and effective quality control system for sample identification and tracking throughout the WES process is essential. We established a multiplex panel that included 22 coding single-nucleotide polymorphism (cSNP) loci. The personal identification and paternity identification abilities of the panel were evaluated, and a preliminary validation of the practical feasibility of the panel was conducted in a clinical WES case. These results indicate that the cSNP panel could be a useful tool for sample tracking in WES.


Assuntos
Exoma , Polimorfismo de Nucleotídeo Único , Humanos , Sequenciamento do Exoma , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
3.
Electrophoresis ; 45(5-6): 463-473, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946554

RESUMO

Next-generation sequencing (NGS) allows for better identification of insertion and deletion polymorphisms (InDels) and their combination with adjacent single nucleotide polymorphisms (SNPs) to form compound markers. These markers can improve the polymorphism of microhaplotypes (MHs) within the same length range, and thus, boost the efficiency of DNA mixture analysis. In this study, we screened InDels and SNPs across the whole genome and selected highly polymorphic markers composed of InDels and/or SNPs within 300 bp. Further, we successfully developed and evaluated an NGS-based panel comprising 55 loci, of which 24 were composed of both SNPs and InDels. Analysis of 124 unrelated Southern Han Chinese revealed an average effective number of alleles (Ae ) of 7.52 for this panel. The cumulative power of discrimination and cumulative probability of exclusion values of the 55 loci were 1-2.37 × 10-73 and 1-1.19 × 10-28 , respectively. Additionally, this panel exhibited high allele detection rates of over 97% in each of the 21 artificial mixtures involving from two to six contributors at different mixing ratios. We used EuroForMix to calculate the likelihood ratio (LR) and evaluate the evidence strength provided by this panel, and it could assess evidence strength with LR, distinguishing real and noncontributors. In conclusion, our panel holds great potential for detecting and analyzing DNA mixtures in forensic applications, with the capability to enhance routine mixture analysis.


Assuntos
Impressões Digitais de DNA , Polimorfismo de Nucleotídeo Único , Humanos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , DNA/genética , DNA/análise , Sequenciamento de Nucleotídeos em Larga Escala , Frequência do Gene
4.
Int J Legal Med ; 138(2): 547-554, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37353677

RESUMO

Saliva is an informative body fluid that can be found at various crime scenes, and the salivary bacterial community has been revealed it is a potential auxiliary target for forensic identification. However, the variation of salivary bacterial community composition across time and geolocation needs to be explored. The study was designed to be carried out during the winter vacation that was across about 50 days and eight geographic locations. The high throughput sequencing was performed with the V3-V4 region of the16S rRNA gene to explore salivary bacterial community composition. An overall slight fluctuation of the salivary bacteria was observed, which primarily occurred in the relative abundance of the salivary bacterial taxa. The results of principal coordinate analysis and hierarchical clustering showed samples were clustered by the individuals. All individuals could be correctly identified with the random forest model. In summation, although the relative abundance of salivary bacteria varied across the changes of time and geolocation, the individualized characteristic of salivary bacteria remained steady, which is beneficial for the salivary bacterial application in personal identification.


Assuntos
Bactérias , Líquidos Corporais , Humanos , RNA Ribossômico 16S/genética , Bactérias/genética , Saliva/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala
5.
Int J Legal Med ; 138(4): 1273-1285, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38491322

RESUMO

In recent years, molecular biology-based diagnostic techniques have made remarkable strides and are now extensively utilized in clinical practice, providing invaluable insights for disease diagnosis and treatment. However, forensic medicine, especially forensic pathology, has witnessed relatively limited progress in the application of molecular biology technologies. A significant challenge in employing molecular techniques for forensic diagnoses lies in the quantitative and qualitative changes observed in diagnostic markers due to sample degradation-a recognized and formidable obstacle. Inspired by the success of DNA sequencing in forensic practices, which enables accurate individual identification even in cases involving degraded and deteriorated tissues and organs, we propose the application of the assay for transposase-accessible chromatin with sequencing (ATAC-seq) to identify targets at the transcriptional onset, exploring chromatin and DNA-level alterations for injury and disease inference in forensic samples. This study employs ATAC-seq to explore alterations in chromatin accessibility post-injury and their subsequent changes over a 2-h degradation period, employing traumatic brain injury (TBI) as a representative model. Our findings reveal high sensitivity of chromatin accessibility sites to injury, evidenced by shifts in thousands of peak positions post-TBI. Remarkably, these alterations remain largely unaffected by early degradation. Our results robustly endorse the notion that integrating and incorporating these specific loci for injury and disease diagnosis in forensic samples holds tremendous promise for practical application. We further validated the above results using human cortical tissue, which supported that early degradation did not significantly affect chromatin accessibility. This pioneering advancement in molecular diagnostic techniques may revolutionize the field of forensic science, especially forensic pathology.


Assuntos
Cromatina , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/diagnóstico , Humanos , Análise de Sequência de DNA/métodos , Transposases/genética , Degradação Necrótica do DNA , Sequenciamento de Nucleotídeos em Larga Escala
6.
Int J Legal Med ; 137(6): 1693-1703, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37731065

RESUMO

Mitochondrial DNA (mtDNA) is an indispensable genetic marker in forensic genetics. The emergence and development of massively parallel sequencing (MPS) makes it possible to obtain complete mitochondrial genome sequences more quickly and accurately. The study evaluated the advantages and limitations of the ForenSeq mtDNA Whole Genome Kit in the practical application of forensic genetics by detecting human genomic DNA standards and thirty-three case samples. We used control DNA with different amount to determine sensitivity of the assay. Even when the input DNA is as low as 2.5 pg, most of the mitochondrial genome sequences could still be covered. For the detection of buccal swabs and aged case samples (bloodstains, bones, teeth), most samples could achieve complete coverage of mitochondrial genome. However, when ancient samples and hair samples without hair follicles were sequenced by the kit, it failed to obtain sequence information. In general, the ForenSeq mtDNA Whole Genome Kit has certain applicability to forensic low template and degradation samples, and these results provide the data basis for subsequent forensic applications of the assay. The overall detection process and subsequent analysis are easy to standardize, and it has certain application potential in forensic cases.

7.
Fa Yi Xue Za Zhi ; 39(6): 601-607, 2023 Dec 25.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-38228480

RESUMO

Age estimation based on tissues or body fluids is an important task in forensic science. The changes of DNA methylation status with age have certain rules, which can be used to estimate the age of the individuals. Therefore, it is of great significance to discover specific DNA methylation sites and develop new age estimation models. At present, statistical models for age estimation have been developed based on the rule that DNA methylation status changes with age. The commonly used models include multiple linear regression model, multiple quantile regression model, support vector machine model, artificial neural network model, random forest model, etc. In addition, there are many factors that affect the level of DNA methylation, such as the tissue specificity of methylation. This paper reviews these modeling methods and influencing factors for age estimation based on DNA methylation, with a view to provide reference for the establishment of age estimation models.


Assuntos
Metilação de DNA , Genética Forense , Humanos , Ilhas de CpG , Redes Neurais de Computação , Modelos Lineares , Envelhecimento/genética
8.
Microb Cell Fact ; 21(1): 46, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331204

RESUMO

BACKGROUND: Human gut microbiota is individually unique that hints the microbiota in fecal traces left in the crime scene could act as a potential biomarker for forensic personal identification. Next-generation DNA sequencing and bioinformatic analysis of fecal samples are revolutionizing our insights into gut microbial communities. While the formation of the gut microbiota is known to be multifactorial, it is unclear whether these characteristics can be applied to forensic applications. Therefore, the gut microbiota of healthy adults with different traits was investigated in this study. RESULTS: Based on the STAMP analysis of each study group, the difference in gut microbiota composition of male and female subjects was observed. The male group was characterized by taxa in the phylum Proteobacteria, while the female group was described by Synergistetes phylum. The gut bacterial community assembly mechanism was mainly affected by the deterministic process. In addition, gut microbiota composition showed meaningful discrimination in each of the BMI groups. At the phylum level, in male subjects, increased representative phyla were Patescibacteria (p < 0.05) in the underweight group and Bacteroidetes (p < 0.05) in the normal-weight group, while in the female group, the significantly different phyla were Bacteroidetes, Firmicutes, and Actinobacteria. At the genus level, 44 unique genera were found to be significantly distinct across BMI study groups. By Fisher's Linear Discriminant Analysis, ninety-four point four percent (94.4%) of original BMI grouped subjects were correctly classified. The linear regression analysis model showed an accuracy of seventy-four percent (74%) in predicting body type. CONCLUSION: In conclusion, subjects with different individual characters have specific gut microbiota, and can be discriminated by bioinformatics methods, suggesting it is promising to apply gut microbiota to forensic personal identification.


Assuntos
Microbioma Gastrointestinal , Microbiota , Adulto , Bactérias/genética , Fezes/microbiologia , Feminino , Firmicutes , Microbioma Gastrointestinal/genética , Humanos , Masculino
9.
Int J Legal Med ; 136(6): 1737-1743, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36083564

RESUMO

Next-generation sequencing and single-cell RNA sequencing (scRNA-seq) technologies have advanced rapidly in recent years. scRNA-seq reveals the unique gene expression of each cell type, providing directions for exploring cell heterogeneity, cell type-specific responses to injury/disease, and the mechanisms underlying these processes. The development of sequencing technology and improved sequencing throughput have brought about a revolution in single-cell transcriptome study, bringing great benefits to the fields of medicine and biomedical science. From our perspective, certain issues in forensic medicine may potentially be addressed using single-cell transcriptome studies; however, this powerful technique has not yet attracted sufficient attention in forensic medicine-associated research. Therefore, examining and reviewing the latest developments and applications of single-cell transcriptome studies, we present our views on the future directions of forensic research using this technology, aiming to expand the frontiers of forensic science.


Assuntos
Análise de Célula Única , Transcriptoma , Medicina Legal , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
10.
Int J Legal Med ; 136(5): 1211-1226, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35397682

RESUMO

Microhaplotypes (MHs) are a promising new type of forensic markers that are defined by the combinations of two- or more single-nucleotide polymorphisms (SNPs) within 200 bp. Their advantages, such as low mutation rates, lack of stutter artifacts, and short amplicons, have improved human identification, kinship analysis, ancestry prediction, and mixture deconvolution capabilities. Information on published MHs, e.g., allele frequencies, is available in widely used public databases, ALlele FREquency Database, and MicroHapDB. However, there are abundant non-published MHs spread over the whole genome, and those databases do not incorporate other databases (e.g., the SNP Database) to provide users with more integrated information. Therefore, it is essential to establish a robust, responsive, and comprehensive MHs database. In this study, we thoroughly screened for SNP-SNP MHs among 26 populations from the 1000 Genomes Project (Phase 3). All genotype data of SNPs in each MH were converted to PHASE input files, and allele frequencies were estimated using PHASE. We compiled a detailed summary of SNP-SNPs at the global, continental, and population levels focused on haplotypes and the Ae value and supplemented our database using dbSNP data (last updated in 2015). We have successfully established a dual-SNP MH database (D-SNPsDB) of MHs within 50 bp for 26 populations in the integration of basic data such as physical positions in the human genome, mapping of variant identifiers (rsIDs), allele frequencies, and basic variant information. For public database queries, the D-SNPsDB web app was developed with the R Shiny package to get integrated information.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Frequência do Gene , Genótipo , Haplótipos , Humanos
11.
Int J Legal Med ; 136(6): 1565-1575, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36076078

RESUMO

Analysis of genetic markers can provide clues for case investigation. Short tandem repeat (STR) detection and analysis are widely used for both personal identification and parentage testing. However, DNA analysis currently cannot provide sufficient information for body fluid identification. Tissue or cell sources of samples can be identified by detecting body fluid-specific mRNA markers, which have been studied thoroughly. Integrating STR profiling and mRNA expression patterns can provide more information than conventional methods for investigations and the reconstruction of crime scenes; this can be achieved by DNA/RNA co-extraction technology, which is economical, efficient, and suitable for low-template samples. Here, we propose a co-analysis system based on the PowerPlex 16 kit. This system can simultaneously amplify 25 markers, including 15 STRs, one non-STR amelogenin, and nine mRNA markers (three blood-specific, two saliva-specific, two semen-specific, and two housekeeping gene markers). The specificity and sensitivity of the co-analysis system were determined and aged and degraded samples were used to validate the stability of the co-analysis system. Finally, different DNA/RNA ratios and various carriers were evaluated. The results showed that the DNA/RNA co-analysis system correctly identified different types of body fluid stains. The STR profiles obtained using the co-analysis system were identical to those obtained using the PP16 kit, which demonstrates that the mRNA primers used did not affect STR profiling. Complete STR and mRNA profiles could be obtained from 1/8 portions of buccal swabs, 1/16 portions of swabs of blood and semen samples, 0.1 cm2 of blood samples, 0.25 cm2 of semen samples, and 1.0 cm2 saliva samples. Additionally, our findings indicate that complete STR and mRNA profiles can be obtained with this system from blood and semen samples when the DNA/RNA ratio is 1:1/32. This study suggests that the co-analysis system could be used for simultaneous personal identification and body fluid identification.


Assuntos
Líquidos Corporais , Impressões Digitais de DNA , Idoso , Amelogenina/genética , Líquidos Corporais/química , DNA/análise , Impressões Digitais de DNA/métodos , Marcadores Genéticos , Humanos , Repetições de Microssatélites , RNA/análise , RNA Mensageiro/análise , Saliva/química , Sêmen/química
12.
Arch Virol ; 167(1): 213-217, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34826002

RESUMO

A novel positive single-stranded RNA virus, Sclerotinia sclerotiorum hypovirus 9 (SsHV9), was identified in the plant-pathogenic Sclerotinia sclerotiorum strain GB375, which was associated with a garden bean plant in the United States. The complete genome of SsHV9 is 14,067 nucleotides in length, excluding the poly(A) tail. It has a single large open reading frame encoding a putative polyprotein (4,196 amino acids), which is predicted to contain a papain-like protease, a protein of unknown function, an RNA-dependent RNA polymerase, and an RNA helicase. Phylogenetic analysis based on a multiple alignment of amino acid sequences of polyproteins that suggested SsHV9 belongs to the proposed genus "Alphahypovirus" in the family Hypoviridae.


Assuntos
Ascomicetos , Micovírus , Vírus de RNA , Ascomicetos/genética , Micovírus/genética , Genoma Viral , Fases de Leitura Aberta , Filogenia , Vírus de RNA/genética , RNA Viral/genética , Proteínas Virais/genética
13.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35163726

RESUMO

Optogenetics is emerging as an ideal method for controlling cellular activity. It overcomes some notable shortcomings of conventional methods in the elucidation of neural circuits, promotion of neuroregeneration, prevention of cell death and treatment of neurological disorders, although it is not without its own limitations. In this review, we narratively review the latest research on the improvement and existing challenges of optogenetics, with a particular focus on the field of brain injury, aiming at advancing optogenetics in the study of brain injury and collating the issues that remain. Finally, we review the most current examples of research, applying photostimulation in clinical treatment, and we explore the future prospects of these technologies.


Assuntos
Lesões Encefálicas , Doenças do Sistema Nervoso , Encéfalo/fisiologia , Lesões Encefálicas/terapia , Humanos , Optogenética/métodos
14.
Plant Biotechnol J ; 19(11): 2349-2361, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34265153

RESUMO

Sclerotinia sclerotiorum and Botrytis cinerea are typical necrotrophic pathogens that can attack more than 700 and 3000 plant species, respectively, and cause huge economic losses across numerous crops. In particular, the absence of resistant cultivars makes the stem rot because of S. sclerotiorum the major threat of rapeseed (Brassica napus) worldwide along with Botrytis. Previously, we identified an effector-like protein (SsSSVP1) from S. sclerotiorum and a homologue of SsSSVP1 on B. cinerea genome and found that SsSSVP1 could interact with BnQCR8 of rapeseed, a subunit of the cytochrome b-c1 complex. In this study, we found that BnQCR8 has eight homologous copies in rapeseed cultivar Westar and reduced the copy number of BnQCR8 using CRISPR/Cas9 to improve rapeseed resistance against S. sclerotiorum. Mutants with one or more copies of BnQCR8 edited showed strong resistance against S. sclerotiorum and B. cinerea. BnQCR8-edited mutants did not show significant difference from Westar in terms of respiration and agronomic traits tested, including the plant shape, flowering time, silique size, seed number, thousand seed weight and seed oil content. These traits make it possible to use these mutants directly for commercial production. Our study highlights a common gene for breeding of rapeseed to unravel the key hindrance of rapeseed production caused by S. sclerotiorum and B. cinerea. In contrast to previously established methodologies, our findings provide a novel strategy to develop crops with high resistance against multiple pathogens by editing only a single gene that encodes the common target of pathogen effectors.


Assuntos
Brassica napus , Doenças das Plantas , Brassica napus/genética , Genes Essenciais , Melhoramento Vegetal , Doenças das Plantas/genética
15.
Electrophoresis ; 42(9-10): 1158-1167, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33570191

RESUMO

With the discovery of circulating cell-free fetal DNA (cffDNA) in maternal plasma, noninvasive prenatal testing became possible. However, analysis of low-level cffDNA against high background maternal DNA remains complicated and challenging. To circumvent this limitation, selective amplification of cffDNA was used in this study. Two kinds of compound markers (namely DIP-STR and SNP-STR), both based on selective amplification, were used here for targeting fetal DNA. By designing two allele-specific forward primers for DIP-STR and SNP-STR, DNA fragments with different DIP/SNP alleles can be selectively amplified. When analyzing maternal plasma DNA, these markers can selectively target paternally inherited fetal alleles whose DIP/SNP allele was not shared with the mother. In this study, 21 families were studied with six DIP-STRs and 11 SNP-STRs. Fetal DNA was successfully detected across plasma samples for at least one marker. Detection rate varied between DIP-STR and SNP-STR markers, and DIP-STR outperforms SNP-STR. Fetal alleles obtained from maternal plasma were double confirmed by genotyping paternal genomic DNA and fetal genomic DNA from amniocentesis. This study demonstrated that selective amplification strategy can be used to target cffDNA in maternal plasma, which will be a promising method for noninvasive prenatal paternity testing.


Assuntos
Ácidos Nucleicos Livres/genética , Biomarcadores , DNA/genética , Feminino , Feto , Humanos , Masculino , Repetições de Microssatélites/genética , Paternidade , Gravidez
16.
Electrophoresis ; 42(16): 1614-1622, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34233021

RESUMO

In the past decade, mRNA markers have been well demonstrated as promising molecular markers in forensic body fluid identification (BFI), and successfully used in wide applications. Several studies have assessed the performance of semen-specific mRNA markers in distinguishing semen from other common body fluids at the crime scene. Infertility has been reported as a global health problem that is affecting approximately 15% of couples worldwide. Therefore, it is important for forensic researchers to consider the impact of infertility on semen identification. This study aimed to explore the effect of semen from infertile men (hereinafter "infertile semen") on BFI and to identify semen-specific mRNAs that can efficiently and accurately distinguish normal and infertile semen samples from other body fluids. Results showed that the selected five mRNAs (KLK3, TGM4, SEMG1, PRM1, and PRM2) performed a significantly high semen specificity in normal semen. Moreover, KLK3 was slightly influenced by infertile semen samples with over 98% positive results in all semen samples. The accuracy to predict normal semen reached up to 96.6% using the discrimination function Y1 with KLK3 and PRM1. However, when the infertile semen samples were included in discrimination function (function Y2 with KLK3), the accuracy rate of semen identification (including the normal and infertile semen) was down to 89.5%. Besides, the sensitivity of multiplex assay could reach down to 50pg. Our results suggest that it is important to consider the presence of infertile semen when using mRNAs to identify semen samples, which would have a far-reaching impact in forensic identification.


Assuntos
Líquidos Corporais , Infertilidade Masculina , Biomarcadores , Humanos , Infertilidade Masculina/genética , Masculino , RNA Mensageiro/genética , Sêmen
17.
Electrophoresis ; 42(19): 1928-1935, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34369612

RESUMO

The Microreader 28A ID System is a new 28-plex genotyping system with 6-dye multiplex amplification, which allows the simultaneous amplification of all 20 Combined DNA Index System (CODIS) core loci (CSF1PO, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, FGA, TH01, TPOX, vWA, D1S1656, D2S441, D2S1338, D10S1248, D12S391, D19S433, D22S1045), plus five extended STRs loci (D6S1043, Penta D, Penta E, DYS391, SE33), 2 Y-Indels (Rs2032678, Rs771783753), and the amelogenin loci. This system can be used for forensic analyses, such as personal identification, kinship testing, scientific research, database applications, and other aspects of human genetic identification. The validation of the Microreader 28A ID System followed the "Validation Guidelines for DNA Analysis Methods (2016)" described by the Scientific Working Group on DNA Analysis Methods and the regulations published by the China Ministry of Public Security. Our tests included PCR-based studies, sensitivity study, precision and accuracy evaluation, stutter percentage and heterozygous peak height ratio, inhibitor tests, species specificity, and population studies. The validation results suggest that the Microreader 28A ID system is a robust and reliable amplification kit for personal identification, kinship testing, and forensic database applications.


Assuntos
Genética Forense , Repetições de Microssatélites , Amelogenina/genética , DNA/genética , Impressões Digitais de DNA , Frequência do Gene , Genética Populacional , Humanos , Repetições de Microssatélites/genética
18.
Int J Legal Med ; 135(5): 1743-1752, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33969445

RESUMO

The eyelid folding represents one of the most distinguishing features of East Asian faces, involving the absence or presence of the eyelid crease, i.e., single vs. double eyelid. Recently, a genome-wide association study (GWAS) identified two SNPs (rs12570134 and rs1415425) showing genome-wide significant association with the double eyelid phenotype in Japanese. Here we report a confirmatory study in 697 Chinese individuals of exclusively Han origin. Only rs1415425 was statistically significant (P-value = 0.011), and the allele effect was on the same direction with that reported in Japanese. This SNP combined with gender and age explained 10.0% of the total variation in eyelid folding. DNA-based prediction model for the eyelid trait was developed and evaluated using logistic regression. The model showed mild to moderate predictive capacity (AUC = 0.69, sensitivity = 63%, and specificity = 70%). We further selected six additional SNPs by massive parallel sequencing of 19 candidate genes in 24 samples, and one SNP rs2761882 was statistically significant (P-value = 0.027). All predictors including these two SNPs (rs1415425 and rs2761882), gender, and age explained 11.2% of the total variation. The combined prediction model obtained an improved predictive capacity (AUC = 0.72, sensitivity = 62%, and specificity = 66%). Our study thus provided a confirmation of previous GWAS findings and a DNA-based prediction of the eyelid trait in Chinese Han individuals. This model may add value to forensic DNA phenotyping applications considering gender and age can be separately inferred from genetic and epigenetic markers. To further improve the prediction accuracy, future studies should focus on identifying more informative SNPs by large GWASs in East Asian populations.


Assuntos
Pálpebras/anatomia & histologia , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Adulto , Área Sob a Curva , Povo Asiático/genética , China/etnologia , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Sensibilidade e Especificidade
19.
Int J Legal Med ; 135(1): 23-41, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32519012

RESUMO

Y-chromosome-specific short tandem repeat loci (Y-STRs) are commonly analysed in forensic science for paternity testing, familial searches, and, in sexual assault cases, to determine male DNA identity from mixed sources with high background female DNA content. The Microreader 40Y ID System is a six-dye multiplex amplification kit that contains 17 Y-STR loci from the Yfiler Plus PCR Amplification Kit and the powerplex Y23 system (DYS19, DYF385a/b, DYS389I/II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS549, DYS635(Y GATA C4), DYS643, Y GATA H4, DYS460, DYS481, DYS533, DYF387S1, DYS449, DYS518, DYS570, DYS576, and DYS627), plus six high polymorphic loci (DYS444, DYS447, DYS557, DYS596, DYS527 a/b) as well as 4 additional candidate Y-STR loci (DYS593, DYF404S1, DYS645) and a Y-Indel loci (Rs2032678), thereby providing greater efficiency, compatibility, and accuracy. The Microreader 40Y ID System can directly amplify markers from blood or saliva on filter paper or FTA cards, without template extraction or purification, and can also be used for extracted DNA templates. To verify the efficiency and accuracy of the kit, the Microreader 40Y ID System was validated by investigating sensitivity, amplification conditions, male-male and male-female mixtures, PCR inhibition, species specificity, reproducibility, and efficacy with degraded samples. The Y-STR loci were also tested using 437 male samples from Tibet, Han, and Yi. The Microreader 40Y ID System was able to compensate for some of the shortcomings of Y-STR markers in practical applications, such as cost and profile interpretation, and fully meets the domestic Y chromosome database construction specifications and requirements.


Assuntos
Cromossomos Humanos Y , Impressões Digitais de DNA/instrumentação , Repetições de Microssatélites , Reação em Cadeia da Polimerase Multiplex/instrumentação , Animais , Etnicidade/genética , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes
20.
Int J Legal Med ; 135(6): 2247-2261, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34477924

RESUMO

Several studies have confirmed that microRNAs (miRNAs) are promising markers for body fluid identification since they were introduced to this field. However, there is no consensus on the choice of reference genes and identification strategies. In this study, 13 potential candidate miRNAs were screened from three forensically relevant body fluid datasets, and the expression of 12 markers in five body fluids was determined using a real-time quantitative method. Two probabilistic approaches, Naive Bayes (NB) and partial least squares discriminant analysis (PLS-DA), were then applied to predict the origin of the samples to determine whether probabilistic methods are helpful in body fluid identification using miRNA quantitative data. Furthermore, 14 reference combinations were used to validate the influence of different reference choices on the predicted results simultaneously. Our results showed that in the NB model, leave-one-out cross-validation (LOOCV) achieved 100% accuracy and the prediction accuracy of the test set was 100% in most reference combinations. In the PLS-DA model, the first two components could interpret about 80% expression variance and LOOCV achieved 100% accuracy when miR-92a-3p was used as the reference. This study preliminarily proved that probabilistic approaches hold huge potential in miRNA-based body fluid identification, and the choice of references influences the prediction results to a certain extent.


Assuntos
Líquidos Corporais , MicroRNAs , Teorema de Bayes , Biomarcadores , Estudos de Viabilidade , Genética Forense , Humanos , MicroRNAs/genética , Saliva , Sêmen
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA