Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Biol Chem ; 298(2): 101553, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34973334

RESUMO

The breakdown of all-trans-retinal (atRAL) clearance is closely associated with photoreceptor cell death in dry age-related macular degeneration (AMD) and autosomal recessive Stargardt's disease (STGD1), but its mechanisms remain elusive. Here, we demonstrate that activation of gasdermin E (GSDME) but not gasdermin D promotes atRAL-induced photoreceptor damage by activating pyroptosis and aggravating apoptosis through a mitochondria-mediated caspase-3-dependent signaling pathway. Activation of c-Jun N-terminal kinase was identified as one of the major causes of mitochondrial membrane rupture in atRAL-loaded photoreceptor cells, resulting in the release of cytochrome c from mitochondria to the cytosol, where it stimulated caspase-3 activation required for cleavage of GSDME. Aggregation of the N-terminal fragment of GSDME in the mitochondria revealed that GSDME was likely to penetrate mitochondrial membranes in photoreceptor cells after atRAL exposure. ABC (subfamily A, member 4) and all-trans-retinol dehydrogenase 8 are two key proteins responsible for clearing atRAL in the retina. Abca4-/-Rdh8-/- mice exhibit serious defects in atRAL clearance upon light exposure and serve as an acute model for dry AMD and STGD1. We found that N-terminal fragment of GSDME was distinctly localized in the photoreceptor outer nuclear layer of light-exposed Abca4-/-Rdh8-/- mice. Of note, degeneration and caspase-3 activation in photoreceptors were significantly alleviated in Abca4-/-Rdh8-/-Gsdme-/- mice after exposure to light. The results of this study indicate that GSDME is a common causative factor of photoreceptor pyroptosis and apoptosis arising from atRAL overload, suggesting that repressing GSDME may represent a potential treatment of photoreceptor atrophy in dry AMD and STGD1.


Assuntos
Células Fotorreceptoras , Proteínas Citotóxicas Formadoras de Poros , Retina , Retinaldeído , Doença de Stargardt , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Caspase 3/metabolismo , Camundongos , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Retina/metabolismo , Retina/patologia , Retinaldeído/metabolismo , Doença de Stargardt/metabolismo , Doença de Stargardt/patologia
2.
Molecules ; 27(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35744935

RESUMO

Contact metamorphism in coal is usually characterized by a rapid, brief, and exotherm reaction that can change the geothermal gradient. In this process, coal adjacent to the intrusive body can form thermally altered coal-based graphite (TACG). In order to further study the structural changes of TACG at different distances from the intrusive body, four TACG samples were collected in the Zhuji coal mine in the Huainan Coalfield, North China, and their vitrinite reflectance and Raman spectra were measured using polarizing microscopy and Raman spectroscopy. The results showed that: (1) affected by the temperature and stress of magmatic hydrothermal intrusion, the clay minerals in the coal seams appeared distributed in strips; the occurrence of ankerite and pyrite in the coal seams near the magmatic intrusions could be due to a late magmatic hydrothermal mineralization; (2) the Rmax - Rmin correlation for the TACG samples under study showed that thermal metamorphism was the main factor leading to the graphitization of the TACG samples, without an obvious pressure effect; (3) with the increase of the graphitization process, the D- and G-band showed some similar changes, specifically, their peak positions shifted to lower wave numbers, and the full width at half maximum (FWG and FWD) gradually decreased; the difference was that the intensity of the G-band increased, while that of the D-band decreased; (4) the graphitization degree of the TACG samples increased with the increase of the transverse size of the crystals, while the FWG and FWD values of the G- and D-band decreased; (5) in comparison to natural graphite, the TACG still presented structural defects.


Assuntos
Carvão Mineral , Grafite , China , Carvão Mineral/análise , Minerais , Análise Espectral Raman/métodos
3.
Ecotoxicol Environ Saf ; 182: 109409, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31288123

RESUMO

The Wuda Coalfield, Inner Mongolia suffers from serious coal fires for more than half a century. Fire-extinguishing projects have been carried out to suppress the coal fires since the last decade, but sporadic surface fires still occur and underground fires are more prevailing. Here, we used a real-time RA-915M Mercury Analyzer with modified inlet to monitor gaseous Hg concentrations in fumes emitted from boreholes that were designed to detect and control the underground coal fires. Meanwhile, offline methods were used to collect the fumes and analyze the contents of the gases including CO, CO2, CH4, C2H6, C2H4 and C2H2. The results showed that gaseous Hg concentrations in fumes from boreholes ranged from 6.42 ±â€¯0.73 to 123.53 ±â€¯34.66 ng m-3, with an average value of 49 ±â€¯44 ng m-3. We suggest that the amounts of coal left for burning or smoldering mainly accounted for the large variation in fume Hg concentrations of underground coal fires. The gaseous Hg concentrations in near-surface air surrounding boreholes varied from 2.38 ±â€¯0.28 to 13.10 ±â€¯0.97 ng m-3, with a mean value of 6.68 ±â€¯3.09 ng m-3. They were higher than the ambient air Hg concentrations measured at a background site near the Yellow River (<2 ng m-3), suggesting underground coal fires were one significant Hg pollution source. Importantly, we found that gaseous Hg concentrations in the boreholes had significantly positive correlations with temperatures and CO (a traditional coal-fire index gas) contents, implying that Hg has the potential to serve as an index gas to monitor the occurrences of underground coal fires in mining goafs.


Assuntos
Poluentes Atmosféricos/análise , Minas de Carvão , Carvão Mineral/análise , Incêndios , Gases/análise , Mercúrio/análise , China , Monitoramento Ambiental
4.
Artigo em Inglês | MEDLINE | ID: mdl-38954339

RESUMO

A novel 3D nitrogen-doped porous carbon supported Fe-Cu bimetallic nanoparticles composite (Fe-Cu-N-PC) was prepared via direct pyrolysis by employing black liquor lignin as a main precursor, and it was utilized as a novel catalyst for PMS activation in degrading naphthalene. Under the optimum experimental conditions, the naphthalene degradation rate was up to 93.2% within 60 min in the Fe-Cu-N-PC/PMS system. The porous carbon framework of Fe-Cu-N-PC could facilitate the quick molecule diffusion of reactants towards the inner bimetallic nanoparticles and enriched naphthalene molecules from the solution by a specific adsorption, which increased the odds of contact between naphthalene and reactive oxygen species and improved the reaction efficiency. The quenching reaction proved that the non-free radical pathway dominated by 1O2 was the main way in naphthalene degradation, while the free radical pathway involving SO4·- and ·OH only played a secondary role. Moreover, owing to its high magnetization performance, Fe-Cu-N-PC could be magnetically recovered and maintained excellent naphthalene degradation rate after four degradation cycles. This research will offer a theoretical basis for the construction of facile, efficient, and green technologies to remediate persistent organic pollutants in the environment.

5.
Chemosphere ; 351: 141209, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224751

RESUMO

Perfluorooctanoic acid (PFOA) is an emerging pollutant that is non-biodegradable and presents severe environmental and human health risks. In this study, we present an effective and mild approach for PFOA degradation that involves the use of nitrogen-doped carbon foam anchored with nanoscale zero-valent iron (nZVI@NCF) to activate low concentration peroxymonosulfate (PMS) for the treatment. The nZVI@NCF/PMS system efficiently removed 84.4% of PFOA (2.4 µM). The active sites of nZVI@NCF including Fe0 (110) and graphitic nitrogen played crucial roles in the degradation. Electrochemical analyses and density functional theory calculations revealed that nZVI@NCF acted as an electronic donor, transferring electrons to both PMS and PFOA during the reaction. By further analyzing the electron paramagnetic resonance and byproducts, it was determined that electron transfer and singlet oxygen were responsible for PFOA degradation. Three degradation pathways involving decarboxylation and surface reduction of PFOA in the nZVI@NCF/PMS system were determined. Finding from this study indicate that nZVI@NCF/PMS systems are effective in degrading PFOA and thus present a promising persulfate-advanced oxidation process technology for PFAS treatment.


Assuntos
Caprilatos , Fluorocarbonos , Poluentes Químicos da Água , Humanos , Carbono , Poluentes Químicos da Água/química , Peróxidos/química , Fluorocarbonos/química , Água , Ferro/química
6.
Sci Total Environ ; 866: 161379, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36621477

RESUMO

A novel, inexpensive and eco-friendly aminated lignin/geopolymer supported with Fe nanoparticles (Fe@N-L-GM) composite was successfully synthesized using kaolin and lignin as the major precursors. The prepared Fe@N-L-GM had larger specific surface area, rich oxygen-containing and nitrogen-containing functional groups, greater electron transfer ability and interconnective porous structure. The Fe@N-L-GM could be employed as the adsorbent of Cr(VI) and the activator of potassium peroxymonosulfate (PMS) for treatment of Cr(VI) and naphthalene (NAP) in wastewater. The adsorption and degradation results indicated that the maximum adsorption capacity of Cr(VI) could reach 65.83 mg g-1, whereas the maximum NAP degradation efficiency could reach 97.81 %. The adsorbed Cr(VI) was mostly converted to the low toxic Cr(III) through the reduction of electron donors such as Fe(II), amino and hydroxyl groups. The quenching experiment results confirmed that ·OH might be the crucial ROSs in mediating NAP degradation. In the simultaneous removal experiment of Cr(VI) and NAP, the Cr(VI) removal rate was significantly improved in the presence of NAP, while phenol as the degradation intermediate of NAP might be the main substance for promoting the reduction of Cr(VI). This work provided the theoretical foundation and a new type of material for the simultaneous removal of heavy metal and persistent organic pollutants (POPs).

7.
Chemosphere ; 303(Pt 2): 135185, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35660396

RESUMO

A low-cost and environment-friendly biochar/geopolymer composite loaded with Fe and Cu nanoparticles (Fe-Cu@BC-GM) was prepared by impregnation-calcination using lignin and kaolin as precursors. SEM, FTIR and XRD analysis suggested that the Fe-Cu@BC-GM had a certain pore structure, rich functional groups and stable crystal structure. The obtained Fe-Cu@BC-GM was used as the catalyst of potassium peroxymonosulfate (PMS) for remediation of wastewater and soil polluted by naphthalene (NAP). Experimental results indicated that Fe-Cu@BC-GM exhibited outstanding catalytic performance, and the maximum degradation rate of NAP in water and soil reached 98.35% and 67.98% within 120 min, respectively. The XPS measurement confirmed the presence of successive Fe (Ⅲ)/Fe (Ⅱ) and Cu(Ⅱ)/Cu(Ⅰ) redox pairs cycles on the surface of Fe-Cu@BC-GM, which made Fe (Ⅲ) and Cu(Ⅰ) continuously generated Fe (Ⅱ) activating PMS to produce SO4·- and ·OH for the degradation of NAP. The effects of Fe-Cu@BC-GM/PMS system on plant toxicity were evaluated by analyzing the degradation intermediates and bioassay of mung bean. It was proved that the Fe-Cu@BC-GM/PMS system could degrade NAP into less toxic intermediates, and the seed germination rate, root and stem length of mung bean after soil remediation were not notably different from those of the uncontaminated soil. This work opened new prospect for the application of geopolymer in degradation of persistent organic pollutants (POPs) and provided a cost-effective option for the remediation of the persistent organic pollutants contaminated water and soil.


Assuntos
Cobre , Nanopartículas , Carvão Vegetal/química , Cobre/química , Ferro/química , Naftalenos , Peróxidos/química , Poluentes Orgânicos Persistentes , Pós , Solo , Água
8.
PLoS One ; 17(4): e0265916, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35446877

RESUMO

Joint roughness coefficients (JRCs) influence the shear and characteristic strengths of structural planes; however, the relationship model of this influence is yet to be derived. This study investigates 11 numerical simulation programs using a realistic failure process analysis software. The influence of size and JRC on the shear strengths of the structural planes was studied. The stress-strain curves of different JRCs and their sizes were analyzed. Mathematical models of the shear strength of structural planes and JRC and sizes were formulated and proposed, and their expressions were obtained. Moreover, mathematical models of JRC and the characteristic size and strength of the structural planes were established.


Assuntos
Modelos Teóricos , Simulação por Computador , Resistência ao Cisalhamento
9.
Sci Total Environ ; 832: 155091, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35398127

RESUMO

An economical, efficient, and environmentally friendly technology was developed for simultaneous remediation of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in soil and water. In this study, using pinecones powder as the precursor, the core-shell structural nitrogen-doped carbon foam loaded with nano zero-valent iron (nZVI@NCF) was synthesized through Mannich reaction and high-temperature carbon reduction. The nZVI@NCF was applied as the adsorbent and catalyst to simultaneously remediate the composite pollutants of Cd (II) and naphthalene (NAP). Under the optimal conditions, the adsorption capacity of Cd (II) in water and soil were 13.9 mg·g-1 and 1.97 mg·g-1, respectively, and the adsorption process conformed to the pseudo-second-order kinetic model. The degradation rates of NAP in water (10 mg·L-1) reached almost 100% as well as it could reach 59.12% in soil (10 mg·kg-1). In addition, it was proved that the presence of NAP could compete with Cd (II) for the active sites on the surface of the material to inhibit the adsorption of Cd (II), while the co-existence of Cd (II) could improve the degradation of NAP by the nZVI@NCF/PMS system due to the nZVI-Cd bimetallic effect and the pro-oxidant effect of Cd (II) promoting the generation of ROS. The free radical quenching experiment revealed that the generated ·O2- was the main substance that mediated the redox of nZVI/Fe2+/Fe3+ to oxidative NAP during the degradation process. Furthermore, the results of the phytotoxicity test demonstrated that the nZVI@NCF/PMS system could effectively remediate the soil co-contaminated with Cd (II) and NAP as well as improve the soil environment quality. This research will provide new materials and potential technologies for the efficient treatment of the composite pollutants in the environment.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Poluentes Químicos da Água , Cádmio/análise , Carbono , Ferro/química , Cinética , Naftalenos , Nitrogênio , Solo , Poluentes do Solo/análise , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA