Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 23(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35628302

RESUMO

Fibroblast growth factor 21 (FGF21) functions as a polypeptide hormone to regulate glucose and lipid metabolism, and its expression is regulated by cellular metabolic stress. Pyruvate is an important intermediate metabolite that acts as a key hub for cellular fuel metabolism. However, the effect of pyruvate on hepatic FGF21 expression and secretion remains unknown. Herein, we examined the gene expression and protein levels of FGF21 in human hepatoma HepG2 cells and mouse AML12 hepatocytes in vitro, as well as in mice in vivo. In HepG2 and AML12 cells, pyruvate at concentrations above 0.1 mM significantly increased FGF21 expression and secretion. The increase in cellular cAMP levels by adenylyl cyclase activation, phosphodiesterase (PDE) inhibition and 8-Bromo-cAMP administration significantly restrained pyruvate-stimulated FGF21 expression. Pyruvate significantly increased PDE activities, reduced cAMP levels and decreased CREB phosphorylation. The inhibition of exchange protein directed activated by cAMP (Epac) and cAMP response element binding protein (CREB) upregulated FGF21 expression, upon which pyruvate no longer increased FGF21 expression. The increase in plasma pyruvate levels in mice induced by the intraperitoneal injection of pyruvate significantly increased FGF21 gene expression and PDE activity with a reduction in cAMP levels and CREB phosphorylation in the mouse liver compared with the control. In conclusion, pyruvate activates PDEs to reduce cAMP and then inhibits the cAMP-Epac-CREB signaling pathway to upregulate FGF21 expression in hepatocytes.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Fatores de Crescimento de Fibroblastos , Fatores de Troca do Nucleotídeo Guanina , Fígado , Diester Fosfórico Hidrolases , Ácido Pirúvico , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fatores de Crescimento de Fibroblastos/biossíntese , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células Hep G2 , Humanos , Fígado/enzimologia , Fígado/metabolismo , Camundongos , Diester Fosfórico Hidrolases/metabolismo , Ácido Pirúvico/sangue , Ácido Pirúvico/metabolismo , Ácido Pirúvico/farmacocinética , Transdução de Sinais/fisiologia
2.
Cell Biol Int ; 44(1): 89-97, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31322778

RESUMO

Free fatty acid receptor G protein-coupled receptor 120 (GPR120) is highly expressed in macrophages and was reported to inhibit lipopolysaccharide (LPS)-stimulated cytokine expression. Under inflammation, macrophages exhibit striking functional changes, but changes in GPR120 expression and signaling are not known. In this study, the effects of LPS treatment on macrophage GPR120 expression and activation were investigated. The results showed that LPS inhibited GPR120 expression in mouse macrophage cell line Ana-1 cells. Moreover, LPS treatment inhibited GPR120 expression in mouse alveolar macrophages both in vitro and in vivo. The inhibitory effect of LPS on GPR120 expression was blocked by Toll-like receptor 4 (TLR4) inhibitor TAK242 and p38 mitogen-activated protein kinase inhibitor LY222820, but not by ERK1/2 inhibitor U0126 and c-Jun N-terminal kinase inhibitor SP600125. LPS-induced inhibition of GPR120 expression was not attenuated by GPR120 agonists TUG891 and GW9508. TUG891 inhibited the phagocytosis of alveolar macrophages, and LPS treatment counteracted the effects of TUG891 on phagocytosis. These results indicate that pretreatment with LPS inhibits GPR120 expression and activation in macrophages. It is suggested that LPS-induced inhibition of GPR120 expression is a reaction enhancing the LPS-induced pro-inflammatory response of macrophages.

3.
Sheng Li Xue Bao ; 72(2): 175-180, 2020 Apr 25.
Artigo em Zh | MEDLINE | ID: mdl-32328611

RESUMO

The present study was aimed to clarify the signaling molecular mechanism by which fibroblast growth factor 21 (FGF21) regulates leptin gene expression in adipocytes. Differentiated 3T3-F442A adipocytes were used as study object. The mRNA expression level of leptin was detected by fluorescence quantitative RT-PCR. The phosphorylation levels of proteins of signal transduction pathways were detected by Western blot. The results showed that FGF21 significantly down-regulated the mRNA expression level of leptin in adipocytes, and FGF21 receptor inhibitor BGJ-398 could completely block this effect. FGF21 up-regulated the phosphorylation levels of ERK1/2 and AMPK in adipocytes. Either ERK1/2 inhibitor SCH772984 or AMPK inhibitor Compound C could partially block the inhibitory effect of FGF21, and the combined application of these two inhibitors completely blocked the effect of FGF21. Neither PI3K inhibitor LY294002 nor Akt inhibitor AZD5363 affected the inhibitory effect of FGF21 on leptin gene expression. These results suggest that FGF21 may inhibit leptin gene expression by activating ERK1/2 and AMPK signaling pathways in adipocytes.


Assuntos
Adipócitos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Leptina/metabolismo , Células 3T3 , Adenilato Quinase , Animais , Regulação para Baixo , Sistema de Sinalização das MAP Quinases , Camundongos , Fosforilação , Transdução de Sinais
4.
Int J Mol Sci ; 15(8): 14180-90, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25196518

RESUMO

Electromagnetic fields are considered to potentially affect embryonic development, but the mechanism is still unknown. In this study, human embryonic stem cell (hESC) line HUES-17 was applied to explore the mechanism of exposure on embryonic development to pulsed electromagnetic field (PEMF) for 400 pulses at different electric field intensities and the differentiation of HUES-17 cells was observed after PEMF exposure. The expression of alkaline phosphatase (AP), stage-specific embryonic antigen-3 (SSEA-3), SSEA-4 and the mRNA level and protein level of Oct4, Sox2 and Nanog in HUES-17 cells remained unchanged after PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m. Four hundred pulses PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m did not affect the differentiation of HUES-17 cells. The reason why electromagnetic fields affect embryonic development may be due to other mechanisms rather than affecting the differentiation of embryonic stem cells.


Assuntos
Campos Eletromagnéticos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fosfatase Alcalina/metabolismo , Antígenos Glicosídicos Associados a Tumores/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Antígenos Embrionários Estágio-Específicos/metabolismo
5.
Biomed Res Int ; 2020: 1706168, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32149083

RESUMO

Movement and phagocytosis characterize the fundamental actions of macrophages. Although it is known that the free fatty acid receptor GPR120 is expressed in macrophages and regulates cytokine expression to exert anti-inflammatory activities, the effects of GPR120 activation on the motility and phagocytosis of macrophages are not clear. In this study, mouse alveolar macrophages (AM) were stimulated with the GPR120 agonist TUG-891, and the changes in cell motility, intracellular Ca2+ concentration ([Ca2+]i), and the ability of phagocytosis were measured. Mouse AM in controls exhibited active movement in vitro, and TUG-891 significantly restrained AM movement. Meanwhile, TUG-891 stimulated a quick increase in [Ca2+]i in AM, which was blocked separately by the Gq protein inhibitor YM-254890, the phospholipase C (PLC) inhibitor U73122, or depletion of endoplasmic reticulum (ER) Ca2+ store by thapsigargin. The inhibition of AM movement by TUG-891 was eliminated by YM-254890, U73122, thapsigargin, and chelation of cytosolic Ca2+ by BAPTA. Moreover, TUG-891 inhibited AM phagocytosis of fluorescent microspheres, which was also blocked by YM-254890, U73122, thapsigargin, and BAPTA. In conclusion, GPR120 activation in mouse AM increases [Ca2+]i but inhibits the motility and phagocytosis via Gq protein/PLC-mediated Ca2+ release from ER Ca2+ store.


Assuntos
Compostos de Bifenilo/farmacologia , Movimento Celular/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Fenilpropionatos/farmacologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo
6.
Endocrinology ; 161(10)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877513

RESUMO

The free fatty acid receptor G protein-coupled receptor 120 (GPR120) is expressed in pancreatic islets, but its specific cell distribution and function have not been fully established. In this study, a GPR120-IRES-EGFP knockin (KI) mouse was generated to identify GPR120-expressing cells with enhanced green fluorescence proteins (EGFP). EGFP-positive cells collected from KI mouse islets by flow cytometry had a significantly higher expression of pancreatic polypeptide (PP) evidenced by reverse transcriptase (RT)-quantitative polymerase chain reaction (qPCR). Single-cell RT-PCR and immunocytochemical double staining also demonstrated the coexpression of GPR120 with PP in mouse islets. The GPR120-specific agonist TUG-891 significantly increased plasma PP levels in mice. TUG-891 significantly increased PP levels in islet medium in vitro, which was markedly attenuated by GPR120 small interfering RNA treatment. TUG-891-stimulated PP secretion in islets was fully blocked by pretreatment with YM-254890 (a Gq protein inhibitor), U73122 (a phospholipase C inhibitor), or thapsigargin (an inducer of endoplasmic reticulum Ca2+ depletion), respectively. TUG-891 triggered the increase in intracellular free Ca2+ concentrations ([Ca2+]i) in PP cells, which was also eliminated by YM-254890, U73122, or thapsigargin. GPR120 gene expression was significantly reduced in islets of high-fat diet (HFD)-induced obese mice. TUG-891-stimulated PP secretion was also significantly diminished in vivo and in vitro in HFD-induced obese mice compared with that in normal-chow diet control mice. In summary, this study demonstrated that GPR120 is expressed in mouse islet PP cells and GPR120 activation stimulated PP secretion via the Gq/PLC-Ca2+ signaling pathway in normal-chow diet mice but with diminished effects in HFD-induced obese mice.


Assuntos
Cálcio/metabolismo , Ilhotas Pancreáticas/metabolismo , Polipeptídeo Pancreático/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Fosfolipases Tipo C/metabolismo , Animais , Compostos de Bifenilo/farmacologia , Células Cultivadas , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenilpropionatos/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fosfolipases Tipo C/fisiologia
7.
Biomed Pharmacother ; 117: 109172, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31261028

RESUMO

Macrophages in the kidney play different roles in renal interstitial fibrosis (RIF) depending on their phenotypes. M2 phenotype macrophages are believed to protect the kidney against RIF. Free fatty acid receptor GPR120 is expressed in macrophages, and its activation induces macrophage transition to M2 phenotype. In this study, the effects of GPR120 agonist-programmed macrophages on RIF were investigated. The peritoneal macrophages collected from rats were incubated with GPR120 agonist TUG891 in vitro for 24 h, and then they were transplanted autologously to the kidney with ureteral obstruction by intrarenal injection for 7 days on the same day following unilateral ureteral obstruction (UUO) operation. RIF was identified by Masson trichrome histological staining, and the expression of RIF-related proteins was analyzed by immunohistochemistry and western blot. It was observed that TUG891-programmed macrophages up-regulated the expression of CD206 and arginase-1 while the expression of interleukin-6 and tumor necrosis factor-α were down-regulated. RIF in rats was significantly increased following UUO, which was markedly alleviated by TUG891-programmed macrophages but not untreated macrophages. TUG891-programmed macrophages inhibited the abnormal expression of TGF-ß1 and SMAD2. The abnormal expression of epithelial-mesenchymal transition (EMT)-related proteins including vimentin, α-SMA and ß-catenin was also significantly decreased in rats with transplantation of TUG891-programmed macrophages as compared to UUO rats. This study suggests that autologous administration of peritoneal macrophages programmed in vitro by GPR120 agonist to kidney has a protective effect against RIF following UUO.


Assuntos
Nefropatias/patologia , Macrófagos Peritoneais/metabolismo , Substâncias Protetoras/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Obstrução Ureteral/complicações , Animais , Compostos de Bifenilo/farmacologia , Citocinas/metabolismo , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Nefropatias/genética , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/transplante , Masculino , Modelos Biológicos , Fenótipo , Fenilpropionatos/farmacologia , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/genética , Vimentina/metabolismo , beta Catenina/metabolismo
8.
Biomed Pharmacother ; 103: 1035-1042, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29710661

RESUMO

Grifolic acid is a natural compound isolated from the fungus Albatrellus confluens. In the present study, we assessed the effects of grifolic acid on human osteosarcoma cells. We found that grifolic acid dose- and time-dependently induced cell death in the U-2 OS, MG-63, Saos-2, and 143B human osteosarcoma cell lines. Grifolic acid decreased osteosarcoma cell mitochondrial membrane potential, ATP production, and cellular NADH levels, but did not impact mitochondrial membrane potential in isolated mitochondria from human osteosarcoma cells. Intratumoral injection of grifolic acid also promoted tumor cell death and prolonged survival in nude mice bearing human osteosarcoma xenografts. Grifolic acid had no obvious toxicity in mice, with no histological changes in liver, kidney, lung, or heart, and no changes in blood cell counts or levels of plasma total protein, alanine aminotransferase, or aspartate aminotransferase. These results show that grifolic acid induces osteosarcoma cell death by inhibiting NADH generation and ATP production without obvious toxicity. Intratumoral injection of grifolic acid may be a promising anti-osteosarcoma therapeutic option in patients.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Sesterterpenos/farmacologia , Animais , Antineoplásicos/uso terapêutico , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Nus , Osteossarcoma/patologia , Sesterterpenos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Behav Brain Res ; 256: 72-81, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23933144

RESUMO

Sleep deprivation (SD) has been shown to induce oxidative stress which causes cognitive impairment. Melatonin, an endogenous potent antioxidant, protects neurons from oxidative stress in many disease models. The present study investigated the effect of melatonin against SD-induced cognitive impairment and attempted to define the possible mechanisms involved. SD was induced in rats using modified multiple platform model. Melatonin (15 mg/kg) was administered to the rats via intraperitoneal injection. The open field test and Morris water maze were used to evaluate cognitive ability. The cerebral cortex (CC) and hippocampus were dissected and homogenized. Nitric oxide (NO) and malondialdehyde (MDA) levels and the superoxide dismutase (SOD) enzyme activity of hippocampal and cortical tissues (10% wet weight per volume) were performed to determine the level of oxidative stress. The expression of brain-derived neurotrophic factor (BDNF) and calcium-calmodulin dependent kinase II (CaMKII) proteins in CC and hippocampus was assayed by means of immunohistochemistry. The results revealed that SD impairs cognitive ability, while melatonin treatment prevented these changes. In addition, melatonin reversed SD-induced changes in NO, MDA and SOD in both of the CC and hippocampus. The results of immunoreactivity showed that SD decreased gray values of BDNF and CaMKII in CC and hippocamal CA1, CA3 and dentate gyrus regions, whereas melatonin improved the gray values. In conclusion, our results suggest that melatonin prevents cognitive impairment induced by SD. The possible mechanism may be attributed to its ability to reduce oxidative stress and increase the levels of CaMKII and BDNF in CC and hippocampus.


Assuntos
Encéfalo/efeitos dos fármacos , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Melatonina/farmacologia , Nootrópicos/farmacologia , Privação do Sono/complicações , Animais , Antioxidantes/farmacologia , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Transtornos Cognitivos/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Imuno-Histoquímica , Masculino , Malondialdeído/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA