Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pak J Pharm Sci ; 36(1): 99-102, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36967502

RESUMO

Using Gallic acid as raw material, 1-(substituted aromatic acyl)-4-(3,4,5-trihydroxybenzoyl) thiosemicarbazone was prepared by a two-step reaction and a series of brand-new gallic acid amide derivatives that contained 1,3,4-thiadiazole were synthesized by cyclic reaction. The newly prepared compounds' Vibrio harveyi inhibition activities were evaluated. The results indicated that all compounds showed different degree of inhibitory activity on Vibrio harveyi. Among them, the best inhibition effect was shown by compound 5b and its minimum inhibitory concentration (MIC) was 0.0313mg/mL.


Assuntos
Ácido Gálico , Vibrio , Ácido Gálico/farmacologia , Amidas/farmacologia
2.
Arch Biochem Biophys ; 703: 108852, 2021 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-33771508

RESUMO

Pyrroline-5-carboxylate reductase (PYCR in humans) catalyzes the final step of l-proline biosynthesis by catalyzing the reduction of L-Δ1-pyrroline-5-carboxylate (L-P5C) to l-proline using NAD(P)H as the hydride donor. In humans, three isoforms PYCR1, PYCR2, and PYCR3 are known. Recent genome-wide association and clinical studies have revealed that homozygous mutations in human PYCR2 lead to postnatal microcephaly and hypomyelination, including hypomyelinating leukodystrophy type 10. To uncover biochemical and structural insights into human PYCR2, we characterized the steady-state kinetics of the wild-type enzyme along with two protein variants, Arg119Cys and Arg251Cys, that were previously identified in patients with microcephaly and hypomyelination. Kinetic measurements with PYCR2 suggest a sequential binding mechanism with L-P5C binding before NAD(P)H and NAD(P)+ releasing before L-Pro. Both disease-related variants are catalytically impaired. Depending on whether NADPH or NADH was used, the catalytic efficiency of the R119C protein variant was 40 or 366 times lower than that of the wild-type enzyme, while the catalytic efficiency of the R251C protein variant was 7 or 26 times lower than that of the wild-type enzyme. In addition, thermostability and circular dichroism measurements suggest that the R251C protein variant has a pronounced folding defect. These results are consistent with the involvement of Arg119Cys and Arg251Cys in disease pathology.


Assuntos
Doença/genética , Mutação , Pirrolina Carboxilato Redutases/genética , Estabilidade Enzimática , Humanos , Cinética , Estrutura Secundária de Proteína , Pirrolina Carboxilato Redutases/química , Pirrolina Carboxilato Redutases/metabolismo , Temperatura
3.
Nucleic Acids Res ; 46(17): 8898-8907, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30032296

RESUMO

BRCA proteins are essential for homologous recombination (HR) DNA repair, and their germline or somatic inactivation is frequently observed in human tumors. Understanding the molecular mechanisms underlying the response of BRCA-deficient tumors to chemotherapy is paramount for developing improved personalized cancer therapies. While PARP inhibitors have been recently approved for treatment of BRCA-mutant breast and ovarian cancers, not all patients respond to this therapy, and resistance to these novel drugs remains a major clinical problem. Several mechanisms of chemoresistance in BRCA2-deficient cells have been identified. Rather than restoring normal recombination, these mechanisms result in stabilization of stalled replication forks, which can be subjected to degradation in BRCA2-mutated cells. Here, we show that the transcriptional repressor E2F7 modulates the chemosensitivity of BRCA2-deficient cells. We found that BRCA2-deficient cells are less sensitive to PARP inhibitor and cisplatin treatment after E2F7 depletion. Moreover, we show that the mechanism underlying this activity involves increased expression of RAD51, a target for E2F7-mediated transcriptional repression, which enhances both HR DNA repair, and replication fork stability in BRCA2-deficient cells. Our work describes a new mechanism of therapy resistance in BRCA2-deficient cells, and identifies E2F7 as a putative biomarker for tumor response to PARP inhibitor therapy.


Assuntos
Antineoplásicos/farmacologia , Proteína BRCA2/deficiência , Resistencia a Medicamentos Antineoplásicos/fisiologia , Fator de Transcrição E2F7/fisiologia , Inibidores Enzimáticos/farmacologia , Proteínas de Neoplasias/fisiologia , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/fisiologia , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Fator de Transcrição E2F7/deficiência , Técnicas de Inativação de Genes , Genes BRCA2 , Humanos , Proteínas de Neoplasias/deficiência , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerases , Rad51 Recombinase/biossíntese , Rad51 Recombinase/genética , Reparo de DNA por Recombinação/efeitos dos fármacos , Reparo de DNA por Recombinação/fisiologia
4.
J Biol Chem ; 289(40): 27794-806, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25112878

RESUMO

The amino acid proline is uniquely involved in cellular processes that underlie stress response in a variety of organisms. Proline is known to minimize protein aggregation, but a detailed study of how proline impacts cell survival during accumulation of misfolded proteins in the endoplasmic reticulum (ER) has not been performed. To address this we examined in Saccharomyces cerevisiae the effect of knocking out the PRO1, PRO2, and PRO3 genes responsible for proline biosynthesis. The null mutants pro1, pro2, and pro3 were shown to have increased sensitivity to ER stress relative to wild-type cells, which could be restored by proline or the corresponding genetic complementation. Of these mutants, pro3 was the most sensitive to tunicamycin and was rescued by anaerobic growth conditions or reduced thiol reagents. The pro3 mutant cells have higher intracellular reactive oxygen species, total glutathione, and a NADP(+)/NADPH ratio than wild-type cells under limiting proline conditions. Depletion of proline biosynthesis also inhibits the unfolded protein response (UPR) indicating proline protection involves the UPR. To more broadly test the role of proline in ER stress, increased proline biosynthesis was shown to partially rescue the ER stress sensitivity of a hog1 null mutant in which the high osmolality pathway is disrupted.


Assuntos
Estresse do Retículo Endoplasmático , Prolina/biossíntese , Saccharomyces cerevisiae/metabolismo , NADP/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Pirrolina Carboxilato Redutases/genética , Pirrolina Carboxilato Redutases/metabolismo , Saccharomyces cerevisiae/genética , Resposta a Proteínas não Dobradas , delta-1-Pirrolina-5-Carboxilato Redutase
5.
Autophagy ; 20(2): 349-364, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37733908

RESUMO

The VPS37A gene encodes a subunit of the endosomal sorting complex required for transport (ESCRT)-I complex that is frequently lost in a wide variety of human solid cancers. We have previously demonstrated the role of VPS37A in directing the ESCRT membrane scission machinery to seal the phagophore for autophagosome completion. Here, we report that VPS37A-deficient cells exhibit an accumulation of the apoptotic initiator CASP8 (caspase 8) on the phagophore and are primed to undergo rapid apoptosis through the intracellular death-inducing signaling complex (iDISC)-mediated CASP8 activation upon exposure to endoplasmic reticulum (ER) stress. Using CRISPR-Cas9 gene editing and comparative transcriptome analysis, we identified the ATF4-mediated stress response pathway as a crucial mediator to elicit iDISC-mediated apoptosis following the inhibition of autophagosome closure. Notably, ATF4-mediated iDISC activation occurred independently of the death receptor TNFRSF10B/DR5 upregulation but required the pro-apoptotic transcriptional factor DDIT3/CHOP to enhance the mitochondrial amplification pathway for full-activation of CASP8 in VPS37A-deficient cells stimulated with ER stress inducers. Our analysis also revealed the upregulation of NFKB/NF-kB signaling as a potential mechanism responsible for restraining iDISC activation and promoting cell survival upon VPS37A depletion. These findings have important implications for the future development of new strategies to treat human cancers, especially those with VPS37A loss.Abbreviations: ATG: autophagy related; BMS: BMS-345541; CASP: caspase; CHMP: charged multivesicular body protein; DKO: double knockout; Dox: doxycycline; ER: endoplasmic reticulum; ESCRT: endosomal sorting complex required for transport; gRNA: guide RNA; GSEA: gene set enrichment analysis; GSK157: GSK2656157; iDISC: intracellular death-inducing signaling complex; IKK: inhibitor of NFKB kinase; IPA: ingenuity pathway analysis; KO: knockout; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NFKB/NF-kB: nuclear factor kappa B; OZ: 5Z-7-oxozeaenol; RNA-seq: RNA sequencing; UPR: unfolded protein response; TFT: transcription factor target; THG: thapsigargin; TUN: tunicamycin; VPS: vacuolar protein sorting.


Assuntos
NF-kappa B , Neoplasias , Humanos , Caspase 8/genética , NF-kappa B/metabolismo , Autofagia , RNA Guia de Sistemas CRISPR-Cas , Apoptose/genética , Estresse do Retículo Endoplasmático , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo
6.
Commun Biol ; 7(1): 334, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491121

RESUMO

VPS37A, an ESCRT-I complex component, is required for recruiting a subset of ESCRT proteins to the phagophore for autophagosome closure. However, the mechanism by which VPS37A is targeted to the phagophore remains obscure. Here, we demonstrate that the VPS37A N-terminal domain exhibits selective interactions with highly curved membranes, mediated by two membrane-interacting motifs within the disordered regions surrounding its Ubiquitin E2 variant-like (UEVL) domain. Site-directed mutations of residues in these motifs disrupt ESCRT-I localization to the phagophore and result in defective phagophore closure and compromised autophagic flux in vivo, highlighting their essential role during autophagy. In conjunction with the UEVL domain, we postulate that these motifs guide a functional assembly of the ESCRT machinery at the highly curved tip of the phagophore for autophagosome closure. These results advance the notion that the distinctive membrane architecture of the cup-shaped phagophore spatially regulates autophagosome biogenesis.


Assuntos
Autofagossomos , Autofagia , Autofagossomos/metabolismo , Autofagia/fisiologia , Membranas Intracelulares/metabolismo , Endossomos/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo
7.
BMC Biochem ; 13: 21, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23088625

RESUMO

BACKGROUND: Methionine (Met) residues in proteins can be readily oxidized by reactive oxygen species to Met sulfoxide (MetO). MetO is a promising physiological marker of oxidative stress and its inefficient repair by MetO reductases (Msrs) has been linked to neurodegeneration and aging. Conventional methods of assaying MetO formation and reduction rely on chromatographic or mass spectrometry procedures, but the use of Met-rich proteins (MRPs) may offer a more streamlined alternative. RESULTS: We carried out a computational search of completely sequenced genomes for MRPs deficient in cysteine (Cys) residues and identified several proteins containing 20% or more Met residues. We used these MRPs to examine Met oxidation and MetO reduction by in-gel shift assays and immunoblot assays with antibodies generated against various oxidized MRPs. The oxidation of Cys-free MRPs by hydrogen peroxide could be conveniently monitored by SDS-PAGE and was specific for Met, as evidenced by quantitative reduction of these proteins with Msrs in DTT- and thioredoxin-dependent assays. We found that hypochlorite was especially efficient in oxidizing MRPs. Finally, we further developed a procedure wherein antibodies made against oxidized MRPs were isolated on affinity resins containing same or other oxidized or reduced MRPs. This procedure yielded reagents specific for MetO in these proteins, but proved to be ineffective in developing antibodies with broad MetO specificity. CONCLUSION: Our data show that MRPs provide a convenient tool for characterization of Met oxidation, MetO reduction and Msr activities, and could be used for various aspects of redox biology involving reversible Met oxidation.


Assuntos
Metionina Sulfóxido Redutases/química , Metionina/análogos & derivados , Metionina/química , Alteromonadaceae/enzimologia , Animais , Biologia Computacional , Cisteína/metabolismo , Bases de Dados de Proteínas , Eletroforese em Gel de Poliacrilamida , Ensaio de Desvio de Mobilidade Eletroforética , Peróxido de Hidrogênio/química , Metionina Sulfóxido Redutases/genética , Metionina Sulfóxido Redutases/metabolismo , Camundongos , Oxirredução , Pseudomonas putida/enzimologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Zea mays/enzimologia
8.
Int J Food Microbiol ; 366: 109558, 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35151053

RESUMO

Listeria monocytogenes is an important foodborne pathogen worldwide, with 20-30% fatality rate in vulnerable persons. The hypervirulent L. monocytogenes clonal complex (CC) 87 strains have emerging both in food production environments and clinic cases. The objective of this study was to develop a multiplex PCR to simultaneously detect L. monocytogenes CC87 and CC88 strains based on pan-genome analysis. A novel multiplex PCR comprised of genes A6K41_13255 (specific for CC87 and 88), BCW_4260_01987 group_8135 (specific for CC88) and 02-1103_01073 group_5869 (specific for L. monocytogenes) were designed. The specificity of this multiplex PCR was robust verified with other CCs of L. monocytogenes and other species strains. The detection limit of this multiplex PCR for CC87 and CC88 were 1.7 × 104 cfu/mL and 2.1 × 104 cfu/mL, respectively. This multiplex PCR could accurately detect CC87 and CC88 strains with the interference of different ratios of L. monocytogenes CC8, CC9, CC121, CC155, and L. innocua strains. Furthermore, this multiplex PCR method could successfully detect 1.9 × 104 cfu/mL of L. monocytogenes CC87 and 1.7 × 104 cfu/mL CC88 strains in artificially contaminated milk after 9 h enrichment, respectively. In addition, this multiplex PCR could accurately detect CC87 isolates in food samples within 48 h, which was faster than the routine MLST analysis. In conclusion, this novel multiplex PCR offers a promising approach for accurate, inexpensive, and rapid detection of L. monocytogenes CC87 and CC88 strains simultaneously, which could apply to surveillance the prevalence of CC87 and CC88 strains in both food and food production environments and to evaluate the effect of disinfection measures for controlling the persistent L. monocytogenes contamination.


Assuntos
Listeria monocytogenes , Animais , Microbiologia de Alimentos , Leite , Tipagem de Sequências Multilocus , Reação em Cadeia da Polimerase Multiplex
9.
Cell Death Differ ; 28(2): 657-670, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32807832

RESUMO

Autophagosomal membranes can serve as activation platforms for intracellular death-inducing signaling complexes (iDISCs) to initiate Caspase-8-dependent apoptosis. In this study, we explore the impact of ESCRT-III-dependent phagophore closure on iDISC assemblies and cell death in osteosarcoma and neuroblastoma cells. Inhibition of phagophore closure by conditional depletion of CHMP2A, an ESCRT-III component, stabilizes iDISCs on immature autophagosomal membranes and induces Caspase-8-dependent cell death. Importantly, suppression of the iDISC formation via deletion of ATG7, an E1 enzyme for ubiquitin-like autophagy-related proteins, blocks Caspase-8 activation and cell death following CHMP2A depletion. Although DR5 expression and TRAIL-induced apoptosis are enhanced in CHMP2A-depleted cells, the canonical extrinsic pathway of apoptosis is not responsible for the initiation of cell death by CHMP2A depletion. Furthermore, the loss of CHMP2A impairs neuroblastoma tumor growth associated with decreased autophagy and increased apoptosis in vivo. Together, these findings indicate that inhibition of the ESCRT-III-dependent autophagosome sealing process triggers noncanonical Caspase-8 activation and apoptosis, which may open new avenues for therapeutic targeting of autophagy in cancer.


Assuntos
Autofagia , Caspase 8/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Osteossarcoma/metabolismo , Transdução de Sinais , Animais , Apoptose , Autofagossomos/metabolismo , Linhagem Celular Tumoral , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Feminino , Humanos , Masculino , Camundongos , Neuroblastoma/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Arch Biochem Biophys ; 498(2): 136-42, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20450881

RESUMO

In Saccharomyces cerevisiae, the PUT1 and PUT2 genes are required for the conversion of proline to glutamate. The PUT1 gene encodes Put1p, a proline dehydrogenase (PRODH) enzyme localized in the mitochondrion. Put1p was expressed and purified from Escherichia coli and shown to have a UV-visible absorption spectrum that is typical of a bound flavin cofactor. A K(m) value of 36 mM proline and a k(cat)=27 s(-1) were determined for Put1p using an artificial electron acceptor. Put1p also exhibited high activity using ubiquinone-1 (CoQ(1)) as an electron acceptor with a k(cat)=9.6 s(-1) and a K(m) of 33 microM for CoQ(1). In addition, knockout strains of the electron transfer flavoprotein (ETF) homolog in S. cerevisiae were able to grow on proline as the sole nitrogen source demonstrating that ETF is not required for proline utilization in yeast.


Assuntos
Prolina Oxidase/química , Prolina Oxidase/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Saccharomyces cerevisiae/enzimologia , Escherichia coli/genética , Prolina/química , Prolina Oxidase/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquinona/química
11.
J Agric Food Chem ; 68(3): 907-917, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31842537

RESUMO

Bee pollen (BP) shows profound gut-protecting potentials. BP lipids (BPLs) mainly composed by phospholipids and polyunsaturated fatty acids might be one of the important contributors, while how BPL exerts gut-protecting effects and is transported through intestinal cell monolayers need to be investigated. Here, we exploited a strategy that combines an UPLC-Q-exactive orbitrap/MS-based lipidomics approach with a human intestinal cell (Caco-2) monolayer transport model, to determine the transepithelial transportation of BPL from Camellia sinensis L. (BPL-Cs), in pathological conditions. The results showed that BPL-Cs protected Caco-2 cells against dextran sulfate sodium (DSS)-induced intestinal barrier dysfunction by improving cell viability, maintaining membrane integrity, increasing tight junctions (ZO-1 and Claudin-1), and eliciting the expressions of antioxidative-related genes (NQO1, Nrf2, Txnrd1, and GSTA1). Lipidomics analysis revealed that DSS suppressed the transport and uptake of most of BPL-Cs including glycerophospholipids, sphingomyelins, and glycosylsphingolipids. Pretreatment with BPL-Cs significantly regulated glycerophospholipid and sphingolipid metabolisms, potentially involved in building permeability barriers and alleviating intestinal oxidative stress. Finally, eight classes of lipids were identified as the potential biomarkers for evaluating DSS-induced Caco-2 cell dysfunctions and BPL-intervened modulation. These findings shed light on the development of BPL as gastrointestinal protective food supplements in the future.


Assuntos
Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos , Pólen/metabolismo , Animais , Abelhas , Transporte Biológico , Células CACO-2 , Camellia sinensis/química , Claudina-1/genética , Claudina-1/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Lipídeos/química , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Pólen/química
12.
Nat Commun ; 11(1): 6118, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257658

RESUMO

Inhibitors of poly-ADP-ribose polymerase 1 (PARPi) are highly effective in killing cells deficient in homologous recombination (HR); thus, PARPi have been clinically utilized to successfully treat BRCA2-mutant tumors. However, positive response to PARPi is not universal, even among patients with HR-deficiency. Here, we present the results of genome-wide CRISPR knockout and activation screens which reveal genetic determinants of PARPi response in wildtype or BRCA2-knockout cells. Strikingly, we report that depletion of the ubiquitin ligase HUWE1, or the histone acetyltransferase KAT5, top hits from our screens, robustly reverses the PARPi sensitivity caused by BRCA2-deficiency. We identify distinct mechanisms of resistance, in which HUWE1 loss increases RAD51 levels to partially restore HR, whereas KAT5 depletion rewires double strand break repair by promoting 53BP1 binding to double-strand breaks. Our work provides a comprehensive set of putative biomarkers that advance understanding of PARPi response, and identifies novel pathways of PARPi resistance in BRCA2-deficient cells.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Inibidores de Poli(ADP-Ribose) Polimerases/isolamento & purificação , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/efeitos dos fármacos , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Biomarcadores , Dano ao DNA , Reparo do DNA , Técnicas de Inativação de Genes , Células HeLa , Recombinação Homóloga/efeitos dos fármacos , Humanos , Lisina Acetiltransferase 5/metabolismo , Proteínas Mad2/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
Nat Struct Mol Biol ; 27(6): 570-580, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32424346

RESUMO

The ESCRT complexes drive membrane scission in HIV-1 release, autophagosome closure, multivesicular body biogenesis, cytokinesis, and other cell processes. ESCRT-I is the most upstream complex and bridges the system to HIV-1 Gag in virus release. The crystal structure of the headpiece of human ESCRT-I comprising TSG101-VPS28-VPS37B-MVB12A was determined, revealing an ESCRT-I helical assembly with a 12-molecule repeat. Electron microscopy confirmed that ESCRT-I subcomplexes form helical filaments in solution. Mutation of VPS28 helical interface residues blocks filament formation in vitro and autophagosome closure and HIV-1 release in human cells. Coarse-grained (CG) simulations of ESCRT assembly at HIV-1 budding sites suggest that formation of a 12-membered ring of ESCRT-I molecules is a geometry-dependent checkpoint during late stages of Gag assembly and HIV-1 budding and templates ESCRT-III assembly for membrane scission. These data show that ESCRT-I is not merely a bridging adaptor; it has an essential scaffolding and mechanical role in its own right.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , HIV-1/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos , Autofagossomos , Membrana Celular/metabolismo , Cristalização , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Células HEK293/virologia , HIV-1/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Simulação de Dinâmica Molecular , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Conformação Proteica , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Liberação de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
14.
Biomed Pharmacother ; 117: 109200, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31387194

RESUMO

Bee pollen (BP) is a natural medicine from the hive with various potential health-promoting benefits, but until now there is no study to determine its protective roles in inflammatory bowel disease (IBD). The aim of this study was to reveal the in vitro gastrointestinal protective effects of BP against IBD using molecular and metabolic methods. Dextran sulfate sodium (DSS) challenged Caco-2 cell monolayers were applied to mimic intestinal epithelial cell dysfunctions and metabolic disorders. The pretreatment with BP extract rich in polyphenols ameliorated DSS-induced cell viability losses. It also exerted protective effects against intestinal barrier impairment by strengthening epithelial integrity and tight junction losses induced by DSS. BP up-regulated anti-oxidant (NQO1, Txnrd1, Nrf2) and down-regulated inflammatory (TNF-α and IL-6) mRNA expressions, in accompany with MAPK signaling inhibition. Furthermore, metabolomics analysis based on UPLC-Q-TOF/MS revealed that BP, and DSS treated Caco-2 cells have different metabolomic profiles, with significant changes on key metabolites involved in glycerophospholipid metabolism. Our results showed that BP has great therapeutic potential throughout the early stages of DSS-induced colitis.


Assuntos
Abelhas/química , Produtos Biológicos/farmacologia , Gastroenteropatias/tratamento farmacológico , Intestinos/efeitos dos fármacos , Pólen/química , Substâncias Protetoras/farmacologia , Animais , Células CACO-2 , Linhagem Celular Tumoral , Sulfato de Dextrana/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Gastroenteropatias/induzido quimicamente , Gastroenteropatias/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Polifenóis/farmacologia , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
15.
Cell Rep ; 28(7): 1744-1757.e5, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31412244

RESUMO

During autophagy, phagophores grow into double-membrane vesicles called autophagosomes, but the underlying mechanism remains unclear. Here, we show a critical role of Atg2A in phagophore expansion. Atg2A translocates to the phagophore at the mitochondria-associated ER membrane (MAM) through a C-terminal 45-amino acid domain that we have termed the MAM localization domain (MLD). Proteomic analysis identifies the outer mitochondrial membrane protein TOM40 as a MLD-interacting partner. The Atg2A-TOM40 interaction is responsible for MAM localization of Atg2A and requires the TOM receptor protein TOM70. In addition, Atg2A interacts with Atg9A by a region within its N terminus. Inhibition of either Atg2A-TOM40 or Atg2A-Atg9A interactions impairs phagophore expansion and accumulates Atg9A-vesicles in the vicinity of autophagic structures. Collectively, we propose a model that the TOM70-TOM40 complex recruits Atg2A to the MAM for vesicular and/or non-vesicular lipid transport into the expanding phagophore to grow the size of autophagosomes for efficient autophagic flux.


Assuntos
Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Retículo Endoplasmático/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Sequência de Aminoácidos , Proteínas Relacionadas à Autofagia/genética , Células HEK293 , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Fosfatos de Fosfatidilinositol/metabolismo , Homologia de Sequência
16.
Food Funct ; 10(7): 3828-3838, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31187840

RESUMO

Honeys produced from medicinal plants hold great promise for human health. Herein, we determined the chemical composition and gastrointestinal protective effects of a novel monofloral honey from Prunella vulgaris (PVH). The physicochemical parameters (moisture, sugars, pH, protein content, diastase activity, and hydroxymethylfurfural) of the PVH samples met the criteria specified in European Union regulations and Chinese National Standards. Fifteen phenolic compounds were identified and quantified via high-performance liquid chromatography with a diode array detector and with time of flight tandem mass spectrometry detection (HPLC-DAD/Q-TOF-MS). Rosmarinic acid was found to be a potential marker for PVH identification. Using a dextran sulfate sodium (DSS)-induced acute colitis model, we demonstrated that the administration of PVH (5 g per kg b.w., p.o.) significantly decreased the disease activity index and mitigated colonic histopathological changes in rats. PVH also modulated the gut microbiota composition in the colitic rats, reversing the increase in the Bacteroidetes/Firmicutes ratio and restoring Lactobacillus spp. populations in DSS-challenged rats. The results of this study provide fundamental data on PVH, supporting its future application in the prevention of colitis.


Assuntos
Colite Ulcerativa/prevenção & controle , Sulfato de Dextrana/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Mel , Plantas Medicinais , Prunella/química , Animais , Bacteroidetes , Colite Ulcerativa/induzido quimicamente , Colo/metabolismo , Colo/patologia , Modelos Animais de Doenças , Firmicutes , Flores/química , Lactobacillus , Masculino , Ratos , Ratos Sprague-Dawley
17.
J Cell Biol ; 218(10): 3336-3354, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31519728

RESUMO

The process of phagophore closure requires the endosomal sorting complex required for transport III (ESCRT-III) subunit CHMP2A and the AAA ATPase VPS4, but their regulatory mechanisms remain unknown. Here, we establish a FACS-based HaloTag-LC3 autophagosome completion assay to screen a genome-wide CRISPR library and identify the ESCRT-I subunit VPS37A as a critical component for phagophore closure. VPS37A localizes on the phagophore through the N-terminal putative ubiquitin E2 variant domain, which is found to be required for autophagosome completion but dispensable for ESCRT-I complex formation and the degradation of epidermal growth factor receptor in the multivesicular body pathway. Notably, loss of VPS37A abrogates the phagophore recruitment of the ESCRT-I subunit VPS28 and CHMP2A, whereas inhibition of membrane closure by CHMP2A depletion or VPS4 inhibition accumulates VPS37A on the phagophore. These observations suggest that VPS37A coordinates the recruitment of a unique set of ESCRT machinery components for phagophore closure in mammalian cells.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fagossomos/metabolismo , Células Cultivadas , Células HEK293 , Células HeLa , Humanos
18.
Biochemistry ; 47(25): 6685-94, 2008 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-18505275

RESUMO

Methionine (Met) residues are present in most proteins. However, this sulfur-containing amino acid is highly susceptible to oxidation. In cells, the resulting Met sulfoxides are reduced back to Met by stereospecific reductases MsrA and MsrB. Reversible Met oxidation occurs even in the absence of stress, is elevated during aging and disease, but is notoriously difficult to monitor. In this work, we computationally identified natural Met-rich proteins (MRPs) and characterized three such proteins containing 21-33% Met residues. Oxidation of multiple Met residues in MRPs with H(2)O(2) and reduction of Met sulfoxides with MsrA/MsrB dramatically influenced the mobility of these proteins on polyacrylamide gels and could be monitored by simple SDS-PAGE. We further prepared antibodies enriched for reduced and Met sulfoxide forms of these proteins and used them to monitor Met oxidation and reduction by immunoblot assays. We describe applications of these reagents for the analysis of MsrA and MsrB functions, as well as the development of the assay for high-throughput analysis of their activities. We also show that all Met sulfoxide residues in an MRP can be reduced by MsrA and MsrB. Furthermore, we prepared a selenomethionine form of an MRP and found that selenomethionine selenoxide residues can be efficiently reduced nonenzymatically by glutathione and other thiol compounds. Selenomethionine selenoxide residues were not recognized by antibodies specific for the Met sulfoxide form of an MRP. These findings, reagents, assays, and approaches should facilitate research and applications in the area of Met sulfoxide reduction, oxidative stress, and aging.


Assuntos
Metionina Sulfóxido Redutases/metabolismo , Metionina/metabolismo , Proteínas/metabolismo , Selenometionina/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/imunologia , Western Blotting , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Transportador de Cobre 1 , Eletroforese em Gel de Poliacrilamida , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Espectrometria de Massas , Metionina/análogos & derivados , Metionina Sulfóxido Redutases/genética , Metionina Sulfóxido Redutases/imunologia , Camundongos , Proteínas dos Microfilamentos , Dados de Sequência Molecular , Oxirredução/efeitos dos fármacos , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
J Agric Food Chem ; 65(32): 6848-6860, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28737913

RESUMO

Bee pollen (BP) is collected by honeybees from flower pollen mixed with nectar and its secretions with extensive nutritional and therapeutic properties. Lipids are known to be critical contributors for the therapeutic effects of BP and vary depending on different plant sources; however, lipid profiles of BP are not available. Here, an UPLC-Q-Exactive Orbitrap/MS method was established for comprehensive lipidomics analysis of BP derived from three major nectar plants (Brassica campestris L., Camellia sinensis L., and Nelumbo nucifera Gaertn.). A total of nine lipid classes, including phosphatidylcholine (41 species), phosphatidylethanolamine (43 species), phosphatidylglycerol (9 species), phosphatidylserine (10 species), lysophosphatidylcholine (12 species), ceramide (8 species), diglyceride (27 species), triglyceride (137 species), and fatty acids (47 species), were first identified and quantified in the three BPs. In vitro anti-inflammatory activity was also discovered in the lipid extracts of three BPs, which has potential relevance to the abundance of phospholipids and unsaturated fatty acids in BP. Our comprehensive lipidomics profiling and in vitro anti-inflammatory properties of BP provide evidence for its future application.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Lipídeos/química , Lipídeos/farmacologia , Pólen/química , Animais , Abelhas , Cromatografia Líquida de Alta Pressão , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Espectrometria de Massas , Camundongos , Células RAW 264.7
20.
Antioxid Redox Signal ; 19(9): 998-1011, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23581681

RESUMO

SIGNIFICANCE: The imino acid proline is utilized by different organisms to offset cellular imbalances caused by environmental stress. The wide use in nature of proline as a stress adaptor molecule indicates that proline has a fundamental biological role in stress response. Understanding the mechanisms by which proline enhances abiotic/biotic stress response will facilitate agricultural crop research and improve human health. RECENT ADVANCES: It is now recognized that proline metabolism propels cellular signaling processes that promote cellular apoptosis or survival. Studies have shown that proline metabolism influences signaling pathways by increasing reactive oxygen species (ROS) formation in the mitochondria via the electron transport chain. Enhanced ROS production due to proline metabolism has been implicated in the hypersensitive response in plants, lifespan extension in worms, and apoptosis, tumor suppression, and cell survival in animals. CRITICAL ISSUES: The ability of proline to influence disparate cellular outcomes may be governed by ROS levels generated in the mitochondria. Defining the threshold at which proline metabolic enzyme expression switches from inducing survival pathways to cellular apoptosis would provide molecular insights into cellular redox regulation by proline. Are ROS the only mediators of proline metabolic signaling or are other factors involved? FUTURE DIRECTIONS: New evidence suggests that proline biosynthesis enzymes interact with redox proteins such as thioredoxin. An important future pursuit will be to identify other interacting partners of proline metabolic enzymes to uncover novel regulatory and signaling networks of cellular stress response.


Assuntos
Estresse Oxidativo/fisiologia , Plantas/metabolismo , Prolina/metabolismo , Adaptação Fisiológica , Redes e Vias Metabólicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA