Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36231562

RESUMO

Soil phosphorus accumulation resulting in a high risk of phosphorus pollution is due to high multiple vegetable cropping indexes and excessive fertilizer input in protected fields. Therefore, this study explored the bioavailability of soil-accumulated phosphorus to improve fertilization and reduce the risk of soil phosphorus contamination in protected fields. A field trial was performed in Yanbian Prefecture, China to study the phosphorus bioavailability after continuous spinach planting without phosphate fertilizer applications. Results indicated that with increasing numbers of planting stubbles, soil inorganic phosphorus and occluded phosphorus changed little, while water-soluble and loose phosphorus, aluminum-phosphate, iron-phosphate, and calcium-phosphorus decreased first and then increased. Soil available phosphorus declined linearly. For planting spinach in protected fields, the threshold of soil phosphorus deficiency is 200 mg kg-1. A soil phosphorus supply potential model was established between x (the soil available phosphorus) and y (the numbers of planting stubbles): y = 6.759 + 0.027x, R = 0.99, which can be used to predict how planting stubbles are needed to raise the soil available phosphorus above the critical value of phosphorus deficiency for spinach. These results will provide the theoretical guidance for rational phosphorus fertilizer applications and control agricultural, non-point pollution sources in protected fields.


Assuntos
Fósforo , Solo , Agricultura/métodos , Alumínio , Disponibilidade Biológica , Cálcio , China , Fertilizantes/análise , Ferro , Nitrogênio/análise , Fosfatos , Fósforo/análise , Água
2.
Sci Rep ; 11(1): 3888, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594092

RESUMO

Seasonally freeze-thaw (FT) processes affect soil salinisation in cold and arid regions. Therefore, understanding the mechanisms behind soil salinisation during winter and spring is crucial for management strategies effectively alleviating this. This study aimed to explore the soil FT characteristics and their influences on soil water and salt migrations to clarify the underlying mechanism of the springtime soil salinisation in the western Songnen Plain, China. The spatiotemporal distributions of soil water and salt, frozen depths and soil temperatures were examined at depths of 0-200 cm in three typical landscapes (farmland, Leymus chinensis (Trin.) Tzvel (LT) grassland and alkali-spot (AS) land) from October 2015 to June 2016. Results indicated that the strongest freezing process occurred in AS land, which was characterised by the deepest frost depth (165 cm) and highest freezing rate (3.58 cm/d), followed by LT grassland, and then farmland. The freeze-induced upward redistribution and enrichment of soil water and salt caused the rise and expansion of the soil salification layer, which was the main source of explosive accumulations of surface salt in springtime. Therefore, the FT processes contributed to the surface soil salinisation and alkalisation. Landscapes also affected soil water and salt migrations during FT processes, with the trend being AS land > LT grassland > farmland.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA