Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Molecules ; 28(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36838771

RESUMO

The preparation and performance control of the cellulose membrane are one of the hot topics in the environmentally friendly separation membrane field. In this study, microcrystalline cellulose (MCC) was prepared by microwave-assisted acidic hydrolysis of cellulose obtained from jute, followed by the use of a mixture of N-methylmorpholine-N-oxide and water as a solvent to obtain the homogeneous casting liquid, which was scraped and subsequently immersed in the coagulation bath to form a smooth and dense cellulose membrane. During membrane formation, the crystal structure of MCC changed from type I to type II, but the chemical structure remained unchanged. The mechanical strength and separation performance of the membrane were related to the content of MCC in the casting liquid. When the content of MCC was about 7%, the tensile strength of the membrane reached a maximum value of 13.49 MPa, and the corresponding elongation at break was 68.12%. The water flux (J) and rejection rate (R) for the bovine serum albumin were 19.51 L/(m2·h) and 95.37%, respectively, under an optimized pressure of 0.2 MPa. In addition, the coagulation bath had a significant effect on the membrane separation performance, and J and R were positively and negatively correlated with the polarity of the coagulation bath. Among them, it was note-worthy that J and R of membrane formed in ethanol were 33.95 L/(m2·h) and 91.43%, separately. Compared with water as a coagulation bath, J was increased by 74% at the situation and R was roughly equivalent, showing better separation performance. More importantly, the relationship between the structure and separation performances has also been studied preliminarily. This work provides certain guidance for the preparation of high-performance MCC membranes.


Assuntos
Celulose , Celulose/química , Resistência à Tração , Hidrólise
2.
Molecules ; 28(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446895

RESUMO

Fixing carbon dioxide as a polymer material is an effective and environmentally beneficial approach for reducing the harm of CO2 greenhouse gas. In this paper, carbon dioxide and cyclohexene oxide were used as co-monomers, and a chiral binuclear cobalt complex with a biphenyl linker was employed as the catalyst to successfully prepare a poly(cyclohexenylene carbonate) with high stereoregularity. The influence of catalyst structure, CO2 pressure, and operating temperature on the copolymerization rate and polymer structure were systematically investigated. Optimal catalyst structure and operating conditions were determined, resulting in an excellent poly(cyclohexenylene carbonate) with a stereoregularity as high as 93.5%. Performance testing revealed that the polyester had a molecular weight of approximately 20 kg/mol, a glass transition temperature of 129.7 °C, an onset decomposition temperature of 290 °C, and a tensile strength of 42.8 MPa. These results demonstrate high thermal stability and mechanical strength, indicating the potential for expanding the applications of aliphatic polycarbonate materials.


Assuntos
Dióxido de Carbono , Polímeros , Dióxido de Carbono/química , Polímeros/química , Poliésteres , Temperatura , Carbonatos
3.
Nanotechnology ; 32(13): 135501, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33285528

RESUMO

Graphene oxide-quantum dots systems are emerging as a new class of materials that hold promise for biochemical sensing applications. In this paper, the eco-friendly carbon quantum dots (CQDs) are prepared with cheap and recyclable coke powders as carbon source. The graphene oxide-carbon quantum dots (GO-CQDs) composites are synthesized using graphene oxide as the conductive skeleton to load the CQDs by a one-step calcination method. The obtained GO-CQDs composites demonstrate the successful decoration of CQDs on GO nanosheets. The CQDs acting as spacers create gaps between GO sheets, resulting in a high surface area, which electively increases the electrolyte accessibility and electronic transmission. The electrocatalytic activity and reversibility of GO-CQDs composites can be effectively enhanced by tuning the mass ratio of GO to CQDs and the heating process. Furthermore, a highly sensitive and selective electrochemical sensor for determining uric acid (UA) and ascorbic acid (AA) was developed by modifying GO-CQDs composites onto a glassy carbon electrode. The results show that the linear range, minimum detection limit, and sensitivity of the GO-CQDs electrode for UA detection are 1-150 µM, 0.01 µM, and 2319.4 µA mM-1 cm-2, respectively, and those for AA detection are 800-9000 µM, 31.57 µM, and 53.1 µA mM-1 cm-2, respectively. The GO-CQDs are employed as the electrode materials for the serum and urine samples electrochemical sensing, the results indicate that the sensor can be used for the analysis of real biological samples.

4.
Bioelectrochemistry ; 158: 108728, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38733721

RESUMO

Herein, an aptasensor based on a signal amplification strategy was developed for the sensitive detection of procymidone (PCM). AgPd nanoparticles/Polenimine Graphite oxide (AgPdNPs/PEI-GO) was weaned as electrode modification material to facilitate electron transport and increase the active sites on the electrode surface. Besides, Pt@Ni-Co nanoboxes (Pt@Ni-CoHNBs) were utilized to be carriers for signaling tags, after hollowing ZIF-67 and growing Pt, the resulting Pt@Ni-CoHNBs has a tremendous amounts of folds occurred on the surface, enables it to carry a larger quantity of thionine, thus amplify the detectable electrochemical signal. In the presence of PCM, the binding of PCM to the signal probe would trigger a change in electrical signal. The aptasensor was demonstrated with excellent sensitivity and a low detection limit of 0.98 pg·mL-1, along with a wide linear range of 1 µg·mL-1 to 1 pg·mL-1. Meanwhile, the specificity, stability and reproducibility of the constructed aptasensor were proved to be satisfactory.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Grafite , Limite de Detecção , Nanopartículas Metálicas , Paládio , Platina , Prata , Grafite/química , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Platina/química , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Paládio/química , Prata/química , Níquel/química , Polietilenoimina/química , Cobalto/química , Reprodutibilidade dos Testes
5.
Sci Total Environ ; 928: 172529, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38631626

RESUMO

Herein, a study for the first application of a hybridization chain reaction, a 1,8-naphthalimides-DNA (NDs) intercalator, and DNA-dependent Prussian blue nanoflowers@PtPd materials (PBNFs@PtPd) in the development of a fluorescence-electrochemical (FL-EC) aptasensor. This construction establishes an efficient sensing platform for the detection of procymidone (PCM). In the context of the described experiment, dual-mode detection is achieved through the generation of FL signals by an aptamer labeled with a Cy5 moiety and the formation of DPV signals by the modification of a thionine-appended 1,8-naphthalimide (Thi-NDs). In the presence of PCM, specific recognition occurs, followed by the utilization of magnetic separation technology to release DNA1 (S1) and aptamer-Cy5 (Apt-Cy5), subsequently introducing them onto both fluorescence and EC platforms. The presence of S1 effectively activates hybridization chain reaction (HCR) for the electrode surface, thereby significantly increasing the binding sites for Thi-NDs and consequently greatly amplifying the response signal of differential pulse voltammetry (DPV). The developed FL-EC dual-mode sensing platform demonstrates high sensitivity in the detection of PCM, with the detection limits of 0.173 µg·ml-1 (within the detection range of 500 pg·ml-1 to 500 ng·ml-1) and 0.074 ng·ml-1 (within the detection range of 100 pg·ml-1 to 100 ng·ml-1), respectively. The designed dual-mode sensor exhibits notable characteristics, including high selectivity, reproducibility, synergy, and reliable monitoring/capability for PCM in real samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Eletroquímicas , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , DNA/análise , Fluorescência , Hibridização de Ácido Nucleico , Poluentes Químicos da Água/análise , Limite de Detecção
6.
Sci Total Environ ; 853: 158676, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36096228

RESUMO

Excessive residues of semicarbazide (SEM) can accumulate in animals after the original drug has been abused, posing a risk to human health. Herein, based on multifunctional silica-initiated dual mode signal response, a novel competitive-type immunosensor was constructed for ultrasensitive detection of SEM. As a preliminary signal amplification platform for immunosensors, polyethyleneimine reduced graphene oxide composite gold nanorods (PEI-rGO/AuNRs) modified gold electrodes (AuE) provide a high specific surface area and high electrical conductivity. The thionine-aminated silica nanospheres-AuPt (thi-SiO2@AuPt) were synthesized by a racile coprecipitation method for enzyme immobilization and redox species loading. The multifunctional silica nanosphere conjugated with labeling antibodies (Ab2) was employed as an immunoprobe. The per unit concentration target of SEM can be determined by differential pulse voltammetry (DPV) to detect the thi loaded on the immunoprobe, which can also be determined by square wave voltammetry (SWV) to detect the current generated by the reaction system of H2O2 and hydroquinone (HQ) catalyzed by the immunoprobe with peroxidase. Under optimal conditions, the proposed immunosensor displayed a wide linear range from 1 µg-0.01 ng/mL and low detection limits (S/N = 3) of 0.488 pg/mL and 0.0157 ng/mL, respectively. Ultimately, the developed method exhibits excellent performance in practical applications, providing promising probabilities for SEM detection.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Nanocompostos , Nanotubos , Nitrofuranos , Anticorpos Imobilizados/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Ouro/química , Grafite/química , Peróxido de Hidrogênio/química , Hidroquinonas , Imunoensaio/métodos , Limite de Detecção , Nanopartículas Metálicas/química , Nanocompostos/química , Nanotubos/química , Peroxidases , Polietilenoimina , Semicarbazidas , Dióxido de Silício/química
7.
Sci Rep ; 11(1): 18956, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556803

RESUMO

Microcrystalline cellulose (MCC) was prepared easily from Rabdosia rubescens residue to realize the efficient utilization of waste resources. The yield was about 95.03% under the optimal conditions. Then, MCC membrane was prepared by phase transformation method and its structure and mechanical properties were studied systemically. The results showed the cellulose crystal structure changed from type I to type II in the process of forming membrane, and the thermal stability decreased simultaneously. The content of MCC in casting solution has great influence on the mechanical properties of membranes. The higher the content of MCC, the better the comprehensive mechanical properties of the membranes is. When MCC content is 9%, the tensile strength and elongation at break can reach 8.38 MPa and 26.72%, which is better than traditional cellulose membranes. Finally, the separation properties were studied by separation BSA from water. The results showed that the rejection rate and water flux changed positively and negatively with the change of MCC content. When the content was 5%, the membrane demonstrated the best comprehensive performance, its rejection for BSA was 37.23 g/(m2 h), the corresponding rejection rate and water flux were 88.87% and 41.89 L/(m2 h) respectively.

8.
Chemosphere ; 273: 129678, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33515960

RESUMO

Electrostatic and complexation effects have been considered as the primary adsorption mechanisms for defluorination using aluminum based materials, while the effect of ion exchange between anions and fluorine ion has been mostly ignored, although synthesized alumina materials usually contain a large amount of anions, such as SO42-, NO3-, and Cl-. In this study, the effect of anions exchanges and its key role on defluorination were systematically investigated for adsorption by aluminas loaded with various typical anions (SO42-, NO3- and Cl-). Experimental results showed that SO42-- loading alumina had the best defluorination performance (94.5 mg/g), much higher than NO3- (45.0 mg/g) and Cl- (19.1 mg/g). The contribution ratio of ion exchange between SO42- and F- was as high as 20-60% in all potential defluorination mechanisms. By using Density Functional Theory calculation, the detailed mechanism revealed that the ion exchange process was mainly driven by the tridentate chelation of SO42- which reduced the exchange energy ( [Formula: see text] 4.8 eV). Our study clearly demonstrated that ion exchange between SO42- and F- is a critical mechanism in defluorination using aluminum-based materials and provides a potential alternative method to enhance the adsorption performance of modified alumina.


Assuntos
Óxido de Alumínio , Adsorção , Ânions , Concentração de Íons de Hidrogênio , Troca Iônica , Cinética
9.
ACS Nano ; 14(4): 4559-4566, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32271535

RESUMO

Performance of 2D photodetectors is often predominated by charge traps that offer an effective photogating effect. The device features an ultrahigh gain and responsivity, but at the cost of a retarded temporal response due to the nature of long-lived trap states. In this work, we devise a gain mechanism that originates from massive charge puddles formed in the type-II 2D lateral heterostructures. This concept is demonstrated using graphene-contacted WS2 photodetectors embedded with WSe2 nanodots. Upon light illumination, photoexcited carriers are separated by the built-in field at the WSe2/WS2 heterojunctions (HJs), with holes trapped in the WSe2 nanodots. The resulting WSe2 hole puddles provide a photoconductive gain, as electrons are recirculating during the lifetime of holes that remain trapped in the puddles. The WSe2/WS2 HJ photodetectors exhibit a responsivity of 3 × 102 A/W with a gain of 7 × 102 electrons per photon. Meanwhile, the zero-gate response time is reduced by 5 orders of magnitude as compared to the prior reports for the graphene-contacted pristine WS2 monolayer and WS2/MoS2 heterobilayer photodetectors due to the ultrafast intralayer excitonic dynamics in the WSe2/WS2 HJs.

10.
ACS Nano ; 14(1): 985-992, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31904930

RESUMO

The most pressing barrier for the development of advanced electronics based on two-dimensional (2D) layered semiconductors stems from the lack of site-selective synthesis of complementary n- and p-channels with low contact resistance. Here, we report an in-plane epitaxial route for the growth of interlaced 2D semiconductor monolayers using chemical vapor deposition with a gas-confined scheme, in which patterned graphene (Gr) serves as a guiding template for site-selective growth of Gr-WS2-Gr and Gr-WSe2-Gr heterostructures. The Gr/2D semiconductor interface exhibits a transparent contact with a nearly ideal pinning factor of 0.95 for the n-channel WS2 and 0.92 for the p-channel WSe2. The effective depinning of the Fermi level gives an ultralow contact resistance of 0.75 and 1.20 kΩ·µm for WS2 and WSe2, respectively. Integrated logic circuits including inverter, NAND gate, static random access memory, and five-stage ring oscillator are constructed using the complementary Gr-WS2-Gr-WSe2-Gr heterojunctions as a fundamental building block, featuring the prominent performance metrics of high operation frequency (>0.2 GHz), low-power consumption, large noise margins, and high operational stability. The technology presented here provides a speculative look at the electronic circuitry built on atomic-scale semiconductors in the near future.

11.
ACS Nano ; 13(7): 8146-8154, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31244047

RESUMO

Contact engineering has been the central issue in the context of high-performance field-effect transistors (FETs) made of atomic thin transition metal dichalcogenides (TMDs). Conventional metal contacts on TMDs have been made on top via a lithography process, forming a top-bonded contact scheme with an appreciable contact barrier. To provide a more efficient pathway for charge injection, an end-bonded contact scheme has been proposed, in which covalent bonds are formed between the contact metal and channel edges. Yet, little efforts have been made to realize this contact configuration. Here, we bridge this gap and demonstrate seeded growth of end-bonded contact with different TMDs by means of chemical vapor deposition (CVD). Monolayer WSe2 FETs with a CVD-grown channel and end contacts exhibit improved performance metrics, including an on-current density of 30 µA/µm, a hole mobility of 90 cm2/V·s, and a subthreshold swing of 94 mV/dec, an order of magnitude superior than those of top-contact FET counterparts that share the same channel material. A fundamental NOT logic gate constructed using top-gated and end-bonded WSe2 and MoS2 FETs is also demonstrated. Calculations using density functional theory indicate that the superior device performance stems mainly from the stronger metal-TMD hybridization and substantial gap states in the end-contact configuration.

12.
ACS Appl Mater Interfaces ; 11(39): 35969-35976, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31532619

RESUMO

InSe is a high-mobility layered semiconductor with mobility being highly sensitive to any surrounding media that could act as a source of extrinsic scattering. However, little effort has been made to understand electronic transport in thin InSe layers with native surface oxide formed spontaneously upon exposure to an ambient environment. Here, we explore the influence of InOx/InSe interfacial trap states on electronic transport in thin InSe layers. We show that wet oxidation (processed in an ambient environment) causes massive deep-lying band-tail states, through which electrons conduct via 2D variable-range hopping with a short localization length of 1-3 nm. In contrast, a high-quality InOx/InSe interface can be formed in dry oxidation (processed in pure oxygen), with a low trap density of 1012 eV-1 cm-2. Metal-insulator transition can be thus observed in the gate sweep of the field-effect transistors (FETs), indicative of band transport predominated by extended states above the mobility edge. A room-temperature band mobility of 103 cm2/V s is obtained. The profound difference in the transport behavior between the wet and dry InSe FETs suggests that fluctuating Coulomb potential arising from trapped charges at the InOx/InSe interface is the dominant source of disorders in thin InSe channels.

13.
ACS Nano ; 13(3): 3269-3279, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30790512

RESUMO

One of the primary limitations of previously reported two-dimensional (2D) photodetectors is a low frequency response (≪ 1 Hz) for sensitive devices with gain. Yet, little efforts have been devoted to improve the temporal response of photodetectors while maintaining high gain and responsivity. Here, we demonstrate a gain of 6.3 × 103 electrons per photon and a responsivity of 2.6 × 103 A/W while simultaneously exhibiting an ultrafast response time of 40-65 µs in a hybrid photodetector that consists of graphene-WS2-graphene junctions covered with indium (In) adatoms atop. The resultant responsivity is 6 orders of magnitude higher than that of conventional photodetectors comprising solely of a Au-WS2-Au junction. The photogain is provided mainly by the adsorbed In adatoms, from which photogenerated electrons can be transferred to the WS2 channel, while holes remain trapped in In adatoms, leading to a photogating effect as electrons are recirculating during the residence of holes in In adatoms. At a gate voltage near the Dirac point of graphene, a detectivity of D* = 2.2 × 1012 Jones and an ON/OFF ratio of 104 are achieved. The enhanced performance of the device can be attributed partly to the transparent graphene/WS2 contact and partly to the strong capacitive coupling of the In adatoms with the WS2 channel, which enables ultrafast carrier dynamics.

14.
ACS Appl Mater Interfaces ; 9(41): 36181-36188, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28945069

RESUMO

Atomically thin two-dimensional (2D) materials have attracted increasing attention for optoelectronic applications in view of their compact, ultrathin, flexible, and superior photosensing characteristics. Yet, scalable growth of 2D heterostructures and the fabrication of integrable optoelectronic devices remain unaddressed. Here, we show a scalable formation of 2D stacks and the fabrication of phototransistor arrays, with each photosensing element made of a graphene-WS2 vertical heterojunction and individually addressable by a local top gate. The constituent layers in the heterojunction are grown using chemical vapor deposition in combination with sulfurization, providing a clean junction interface and processing scalability. The aluminum top gate possesses a self-limiting oxide around the gate structure, allowing for a self-aligned deposition of drain/source contacts to reduce the access (ungated) channel regions and to boost the device performance. The generated photocurrent, inherently restricted by the limited optical absorption cross section of 2D materials, can be enhanced by 2 orders of magnitude by top gating. The resulting photoresponsivity can reach 4.0 A/W under an illumination power density of 0.5 mW/cm2, and the dark current can be minimized to few picoamperes, yielding a low noise-equivalent power of 2.5 × 10-16 W/Hz1/2. Tailoring 2D heterostacks as well as the device architecture moves the applications of 2D-based optoelectronic devices one big step forward.

15.
ACS Nano ; 9(11): 11249-57, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26390381

RESUMO

Rhenium disulfide (ReS2) and diselenide (ReSe2), the group 7 transition metal dichalcogenides (TMDs), are known to have a layered atomic structure showing an in-plane motif of diamond-shaped-chains (DS-chains) arranged in parallel. Using a combination of transmission electron microscopy and transport measurements, we demonstrate here the direct correlation of electron transport anisotropy in single-layered ReS2 with the atomic orientation of the DS-chains, as also supported by our density functional theory calculations. We further show that the direction of conducting channels in ReS2 and ReSe2 can be controlled by electron beam irradiation at elevated temperatures and follows the strain induced to the sample. Furthermore, high chalcogen deficiency can induce a structural transformation to a nonstoichiometric phase, which is again strongly direction-dependent. This tunable in-plane transport behavior opens up great avenues for creating nanoelectronic circuits in 2D materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA