RESUMO
Earth's inner core is predominantly composed of solid iron (Fe) and displays intriguing properties such as strong shear softening and an ultrahigh Poisson's ratio. Insofar, physical mechanisms to explain these features coherently remain highly debated. Here, we have studied longitudinal and shear wave velocities of hcp-Fe (hexagonal close-packed iron) at relevant pressure-temperature conditions of the inner core using in situ shock experiments and machine learning molecular dynamics (MLMD) simulations. Our results demonstrate that the shear wave velocity of hcp-Fe along the Hugoniot in the premelting condition, defined as T/Tm (Tm: melting temperature of iron) above 0.96, is significantly reduced by ~30%, while Poisson's ratio jumps to approximately 0.44. MLMD simulations at 230 to 330 GPa indicate that collective motion with fast diffusive atomic migration occurs in premelting hcp-Fe primarily along [100] or [010] crystallographic direction, contributing to its elastic softening and enhanced Poisson's ratio. Our study reveals that hcp-Fe atoms can diffusively migrate to neighboring positions, forming open-loop and close-loop clusters in the inner core conditions. Hcp-Fe with collective motion at the inner core conditions is thus not an ideal solid previously believed. The premelting hcp-Fe with collective motion behaves like an extremely soft solid with an ultralow shear modulus and an ultrahigh Poisson's ratio that are consistent with seismic observations of the region. Our findings indicate that premelting hcp-Fe with fast diffusive motion represents the underlying physical mechanism to help explain the unique seismic and geodynamic features of the inner core.
RESUMO
BACKGROUND: Pneumocystis jirovecii pneumonia (PCP) could be fatal to patients without human immunodeficiency virus (HIV) infection. Current diagnostic methods are either invasive or inaccurate. We aimed to establish an accurate and non-invasive radiomics-based way to identify the risk of PCP infection in non-HIV patients with computed tomography (CT) manifestation of pneumonia. METHODS: This is a retrospective study including non-HIV patients hospitalized for suspected PCP from January 2010 to December 2022 in one hospital. The patients were randomized in a 7:3 ratio into training and validation cohorts. Computed tomography (CT)-based radiomics features were extracted automatically and used to construct a radiomics model. A diagnostic model with traditional clinical and CT features was also built. The area under the curve (AUC) were calculated and used to evaluate the diagnostic performance of the models. The combination of the radiomics features and serum ß-D-glucan levels was also evaluated for PCP diagnosis. RESULTS: A total of 140 patients (PCP: N = 61, non-PCP: N = 79) were randomized into training (N = 97) and validation (N = 43) cohorts. The radiomics model consisting of nine radiomic features performed significantly better (AUC = 0.954; 95% CI: 0.898-1.000) than the traditional model consisting of serum ß-D-glucan levels (AUC = 0.752; 95% CI: 0.597-0.908) in identifying PCP (P = 0.002). The combination of radiomics features and serum ß-D-glucan levels showed an accuracy of 95.8% for identifying PCP infection (positive predictive value: 95.7%, negative predictive value: 95.8%). CONCLUSIONS: Radiomics showed good diagnostic performance in differentiating PCP from other types of pneumonia in non-HIV patients. A combined diagnostic method including radiomics and serum ß-D-glucan has the potential to provide an accurate and non-invasive way to identify the risk of PCP infection in non-HIV patients with CT manifestation of pneumonia. TRIAL REGISTRATION: ClinicalTrials.gov (NCT05701631).
Assuntos
Infecções por HIV , Pneumocystis carinii , Pneumonia por Pneumocystis , beta-Glucanas , Humanos , Pneumonia por Pneumocystis/diagnóstico por imagem , Estudos Retrospectivos , Radiômica , Infecções por HIV/complicações , Glucanos , TomografiaRESUMO
Minimally invasive surgical robots have the advantages of high positioning accuracy, good stability, and flexible operation, which can effectively improve the quality of surgery and reduce the difficulty for doctors to operate. However, in order to realize the translation of the existing RCM mechanism, it is often necessary to add a mobile unit, which is often bulky and occupies most space above the patient's body, thus causing interference to the operation. In this paper, a new type of planar RCM mechanism is proposed. Based on this mechanism, a 3-DOF robotic arm is designed, which can complete the required motion for surgery without adding a mobile unit. In this paper, the geometric model of the mechanism is first introduced, and the RCM point of the mechanism is proven during the motion process. Then, based on the establishment of the geometric model of the mechanism, a kinematics analysis of the mechanism is carried out. The singularity, the Jacobian matrix, and the kinematic performance of the mechanism are analyzed, and the working space of the mechanism is verified according to the kinematic equations. Finally, a prototype of the RCM mechanism was built, and its functionality was tested using a master-slave control strategy.
Assuntos
Médicos , Robótica , Humanos , Procedimentos Cirúrgicos Minimamente Invasivos , Unidades Móveis de Saúde , Movimento (Física)RESUMO
BACKGROUND: Clinically differentiating preinvasive lesions (atypical adenomatous hyperplasia, AAH and adenocarcinoma in situ, AIS) from invasive lesions (minimally invasive adenocarcinomas, MIA and invasive adenocarcinoma, IA) manifesting as ground-glass opacity nodules (GGOs) is difficult due to overlap of morphological features. Hence, the current study was performed to explore the diagnostic efficiency of radiomics in assessing the invasiveness of lung adenocarcinoma manifesting as GGOs. METHODS: A total of 1018 GGOs pathologically confirmed as lung adenocarcinoma were enrolled in this retrospective study and were randomly divided into a training set (n = 712) and validation set (n = 306). The nodules were delineated manually and 2446 intra-nodular and peri-nodular radiomic features were extracted. Univariate analysis and least absolute shrinkage and selection operator (LASSO) were used for feature selection. Clinical and semantic computerized tomography (CT) feature model, radiomic model and a combined nomogram were constructed and compared. Decision curve analysis (DCA) was used to evaluate the clinical value of the established nomogram. RESULTS: 16 radiomic features were selected and used for model construction. The radiomic model exhibited significantly better performance (AUC = 0.828) comparing to the clinical-semantic model (AUC = 0.746). Further analysis revealed that peri-nodular radiomic features were useful in differentiating between preinvasive and invasive lung adenocarcinomas appearing as GGOs with an AUC of 0.808. A nomogram based on lobulation sign and radiomic features showed the best performance (AUC = 0.835), and was found to have potential clinical value in assessing nodule invasiveness. CONCLUSIONS: Radiomic model based on both intra-nodular and peri-nodular features showed good performance in differentiating between preinvasive lung adenocarcinoma lesions and invasive ones appearing as GGOs, and a nomogram based on clinical, semantic and radiomic features could provide clinicians with added information in nodule management and preoperative evaluation.
Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/patologia , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Invasividade Neoplásica/diagnóstico por imagem , Invasividade Neoplásica/patologia , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodosRESUMO
BACKGROUND: Recent epidemiological studies on bloodstream infection (BSI) that include the proportion, species distribution and dynamic changes are scarce in China. This study was performed to understand these epidemiological data of BSI over the past 10 years in China. METHODS: Using a prospective nosocomial infection surveillance system, this study was retrospectively performed in one of the largest hospitals in China. The time trend was tested using the Cochran-Armitage trend test in R Programming Language. RESULTS: From 2010 to 2019, there were totally 9381 episodes of BSI cases out of 1,437,927 adult-hospitalized patients in the hospital, the total proportion of BSI cases was 6.50 (6.50 episodes per 1000 adult-hospitalized patients) and the proportion had significantly decreased (8.24-6.07, time trend P < 0.001). Among the 9381 episodes of BSI, 93.1% were bacteremia and others were fungemia (6.9%). As the most common species, the composition ratios of coagulase-negative staphylococcus (25.6-32.5%), Escherichia coli (9.8-13.6%) and Klebsiella pneumoniae (5.3-10.4%) had been dynamically increased (all time trends P < 0.05) and the proportion of Pseudomonas aeruginosa had decreased (4.0-2.4%, time trend P = 0.032). However, Staphylococcus aureus (3.3-3.1%) and Acinetobacter baumannii (4.4-4.2%) had not changed significantly (P > 0.05). These common species were consistent with China Antimicrobial Surveillance Network reported in 2018 (2018 CHINET report), but their composition ratios were different. In addition, among bacteremia, the proportion of multidrug-resistant bacteria gradually increased from 52.9 to 68.4% (time trend P < 0.001). CONCLUSION: The proportion and species distribution of BSI were dynamically changing along certain trends. These trends deserved more attention from clinicians and researchers.
Assuntos
Bacteriemia , Infecção Hospitalar , Sepse , Adulto , Bacteriemia/epidemiologia , China/epidemiologia , Infecção Hospitalar/epidemiologia , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Centros de Atenção TerciáriaRESUMO
BACKGROUND: Bronchoscopy is critical in the treatment of patients with coronavirus disease (COVID-19), and its use is associated with the challenges of stringent sterilization and virus transmission risk. We developed a disposable and portable bronchoscope (YunSendo-R) and compared its safety and function with those of current reusable and single-use bronchoscopes using an animal model. METHODS: We compared the YunSendo-R system with a commercially available reusable bronchoscope (Olympus, BF-H290) and single-use bronchoscope (Ambu, Ambu® aScope3™). Eight physicians used the three types of bronchoscopes to operate on Guangxi Bama mini pigs. Each operator performed bronchoscopy and completed a 10-point Likert scale questionnaire for evaluating visual ability and manoeuvrability. Operation time and scores were collected. RESULTS: Operation time had no significant differences among the three bronchoscopes. In visual ability, the YunSendo-R bronchoscope showed superior performance to the Ambu bronchoscope in image clarity, colour contrast, and illumination (P < 0.05) and no significant difference in performance compared with the Olympus bronchoscope (P > 0.05). The YunSendo-R bronchoscope had similar manoeuvrability to the Olympus bronchoscope and better scope tip flexibility than the Ambu bronchoscope (P > 0.05). No relevant complications were reported. CONCLUSION: We have developed a new bronchoscopy system with the advantages of disposability and portability, which was effective and safe in an animal model. It has better visual ability than the Ambu bronchoscope and similar visual ability and manoeuvrability to the Olympus bronchoscope. The YunSendo-R bronchoscope is a promising device for clinical practice, especially in reusable-endoscope-transmitted infectious diseases such as COVID-19.
Assuntos
Broncoscopia , COVID-19 , Animais , Broncoscópios , Broncoscopia/métodos , China , Humanos , Suínos , Porco MiniaturaRESUMO
MAIN CONCLUSION: Cell expression is coordinated with chloroplast division in diploid and tetraploid Arabidopsis thaliana, polyploidy promoted the expansion of mesophyll cells and chloroplast division in A. thaliana. Cell development and differentiation are always accompanied by cell expansion and chloroplast division in plants, but the relationship between them is still relatively unknown. To confirm the relationship between cell expansion and chloroplast division during the leaf development process of diploid and tetraploid Arabidopsis thaliana, we systematically analyzed the expansion of mesophyll cells and the division of chloroplasts through cytological observation and gene-expression characteristics. As a result, in diploid and tetraploid A. thaliana, there were two peaks in both mesophyll cell expansion and chloroplast division during the leaf development process. Tetraploid A. thaliana mesophyll cells were larger and contained more chloroplasts than diploid A. thaliana mesophyll cells, which indicated that cell division and cell expansion were coordinated with chloroplast division in A. thaliana and that polyploidy further promoted mesophyll cell expansion and chloroplast division.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Cloroplastos , Diploide , Células do Mesofilo , Folhas de Planta/genética , TetraploidiaRESUMO
BACKGROUND AIMS: Acute lung injury (ALI) secondary to sepsis is a complex disease associated with high morbidity and mortality. Mesenchymal stem cells (MSCs) and their conditioned medium have been demonstrated to reduce alveolar inflammation, improve lung endothelial barrier permeability and modulate oxidative stress in vivo and in vitro. Recently, MSCs have been found to release small extracellular vesicles (sEVs) that can deliver functionally active biomolecules into recipient cells. The authors' study was designed to determine whether sEVs released by MSCs would be effective in sepsis-induced ALI mice and to identify the potential mechanisms. METHODS: A total of 6 h after cercal ligation and puncture, the mice received saline, sEV-depleted conditioned medium (sEVD-CM) or MSC sEVs via the tail vein. RESULTS: The administration of MSC sEVs improved pulmonary microvascular permeability and inhibited both histopathological changes and the infiltration of polymorphonuclear neutrophils into lung tissues. In addition, the activities of antioxidant enzymes were significantly increased in the group treated with sEVs compared with the saline and sEVD-CM groups, whereas lipid peroxidation was significantly decreased. Furthermore, sEVs were found to possibly inhibit phosphorylation of the mitogen-activated protein kinase/nuclear factor kappa B (MAPK/NF-κB) pathway and degradation of IκB but increase the activities of nuclear factor erythroid 2-related factor 2 and heme oxygenase 1. CONCLUSIONS: These findings suggest that one of the effective therapeutic mechanisms of sEVs against sepsis-induced ALI may be associated with upregulation of anti-oxidative enzymes and inhibition of MAPK/NF-κB activation.
Assuntos
Lesão Pulmonar Aguda , Vesículas Extracelulares , Células-Tronco Mesenquimais , Sepse , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/terapia , Animais , Vesículas Extracelulares/metabolismo , Humanos , Pulmão/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Sepse/complicações , Sepse/terapiaRESUMO
OBJECTIVES: To investigate the distribution of Candida spp., predictors of mortality, and effects of therapeutic measures on outcomes of nosocomial bloodstream infection (BSI) due to Candida spp. METHODS: This retrospective, population-based study enrolled adult patients with Candida nosocomial BSI from January 2010 to December 2014 in one tertiary care hospital. The demographics, comorbidities, species distribution, risk factors, and effects of antifungal treatment were assessed. RESULTS: In total, 190 episodes of Candida BSI were identified. The most prevalent species was C. albicans (38.9 %), followed by C. parapsilosis (23.2 %) and C. tropicalis (20.5 %). In vitro susceptibility testing showed that 88.9 % of Candida isolates were susceptible to fluconazole. The 30-day hospital mortality was 27.9 %, while the early mortality (within 7 days) was 16.3 %. In a multivariate regression analysis, the Acute Physiology and Chronic Health Evaluation II score [odds ratio (OR) 1.23; 95 % confidence interval (CI) 1.080-1.390; P = 0.002] and severe sepsis or septic shock (OR 15.35; 95 % CI 2.391-98.502; P = 0.004) were independently correlated with early mortality. Severe sepsis or septic shock (OR 24.75; 95 % CI 5.099-120.162; P < 0.001) was an independent risk factor for 30-day mortality, while proven catheter-related candidemia (OR 0.16; 95 % CI 0.031-0.810; P = 0.027) was a positive factor for 30-day mortality. Early central venous catheter removal and adequate antifungal treatment were closely related to decreased mortality in patients with primary candidemia. CONCLUSION: The proportion of candidemia caused by C. albicans was lower than that caused by non-albicans species. The severity of illness influenced early mortality, and the origin of the central venous catheter remarkably affected 30-day mortality.
Assuntos
Antifúngicos/uso terapêutico , Candida/classificação , Candida/isolamento & purificação , Candidemia/epidemiologia , Candidemia/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Candidemia/tratamento farmacológico , Candidemia/microbiologia , China/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Fatores de Risco , Análise de Sobrevida , Centros de Atenção Terciária , Resultado do Tratamento , Adulto JovemRESUMO
BACKGROUND/AIMS: Mesenchymal stem cell (MSC) based therapies may be useful for treating acute respiratory distress syndrome (ARDS), but the underlying mechanisms are incompletely understood. We investigated the impact of human umbilical cord Wharton's jelly-derived MSC (hUC-MSC) secreted factors on alveolar epithelial cells under septic conditions and determined the relevant intracellular signaling pathways. METHODS: Human alveolar epithelial cells (AEC) and primary human small airway epithelial cells (SAEC) were subjected to lipopolysaccharide (LPS) with or without the presence of hUC-MSC-conditioned medium (CM). Proliferation and migration of AEC and SAEC were determined via an MTT assay, a wound healing assay and a transwell migration assay (only for AEC). Protein phosphorylation was determined by western blot and the experiments were repeated in presence of small-molecule inhibitors. The hMSC-secretory proteins were identified by LC-MS/MS mass spectrometry. RESULTS: MSC-CM enhanced proliferation and migration. Activation of JNK and P38, but not ERK, was required for the proliferation and migration of AEC and SAEC. Pretreatment of AEC or SAEC with SP600125, an inhibitor of JNK1 or SB200358, an inhibitor of P38, significantly reduced cell proliferation and migration. An array of proteins including TGF-beta receptor type-1, TGF-beta receptor type-2, Ras-related C3 botulinum toxin substrate 1 and Ras-related C3 botulinum toxin substrate 2 which influencing the proliferation and migration of AEC and SAEC were detected in MSC-CM. CONCLUSION: Our data suggest MSC promote epithelial cell repair through releasing a repertoire of paracrine factors via activation of JNK and P38 MAPK.
Assuntos
Meios de Cultivo Condicionados/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Antracenos/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/toxicidade , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Fosforilação/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Espectrometria de Massas em Tandem , Cordão Umbilical/citologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidoresRESUMO
Objective: Bloodstream infection (BSI) is characterized by high mortality, especially among these increasing super-elderly patients (≥85 years), and this study was conducted to understand the species distribution, typical clinical features and risk factors for poor prognosis of super-elderly patients with BSI. Methods: Based on previous work, this retrospective study was performed by reviewing an ongoing prospective medical database in a comprehensive tertiary center in China, and all super-elderly patients with BSI in the past 6 years were enrolled in this study. Results: Out of 5944 adult-patients with BSI, there were totally 431 super-elderly patients (≥85 years old) enrolled in this study and age ≥90 years accounted for 31.1% (134/431). Among these 431 super-elderly patients with BSI, 40 patients (9.3%) were diagnosed with BSI and the remained 401 super-elderly patients (90.7%) were defined as hospital-acquired BSI. The typical feature of these super-elderly patients with BSI was the high proportion of patients with various comorbidities, such as cardiovascular disease (83.8%), ischemic cerebrovascular disease (63.3%) and pulmonary infection (61.0%). The other typical feature was that most (60.1%) of these patients had been hospitalized for long time (≥28 days) prior to the onset of BSI, and most patients had received various invasive treatments, such as indwelling central venous catheter (53.1%) and indwelling urinary catheter (47.1%). Unfortunately, due to these adverse features above, both the 7-day short-term mortality (13.2%, 57/431) and the 30-day long-term mortality (24.8%, 107/431) were high. The multivariate analysis showed that both chronic liver failure (OR 7.9, 95% CI 2.3-27.8, P=0.001) and indwelling urinary catheter (OR 2.3, 95% CI 1.1-4.7, P=0.023) were independent risk factors for 7-day short-term mortality, but not for 30-day long-term mortality. In addition, the microbiology results showed that the most common species were associated with nosocomial infection or self-opportunistic infection, such as Staphylococcus hominis (18.3%), Staphylococcus epidermidis (11.8%), Escherichia coli (9.7%), Klebsiella pneumoniae (9.3%) and Candida albicans (8.6%, fungi). Conclusion: Super-elderly patients with BSI had typical features, regardless of the pathogenic species distribution and their drug resistance, or clinical features and their risk factors for poor prognosis. These typical features deserved attention and could be used for the prevention and treatment of BSI among super-elderly patients.
RESUMO
Metal tellurides (MTes) are highly attractive as promising anodes for high-performance potassium-ion batteries. The capacity attenuation of most reported MTe anodes is attributed to their poor electrical conductivity and large volume variation. The evolution mechanisms, dissolution properties, and corresponding manipulation strategies of intermediates (K-polytellurides, K-pTex) are rarely mentioned. Herein, we propose a novel structural engineering strategy to confine ultrafine CoTe2 nanodots in hierarchical nanogrid-in-nanofiber carbon substrates (CoTe2@NC@NSPCNFs) for smooth immobilization of K-pTex and highly reversible conversion of CoTe2 by manipulating the intense electrochemical reaction process. Various in situ/ex situ techniques and density functional theory calculations have been performed to clarify the formation, transformation, and dissolution of K-pTex (K5Te3 and K2Te), as well as verifying the robust physical barrier and the strong chemisorption of K5Te3 and K2Te on S, N co-doped dual-type carbon substrates. Additionally, the hierarchical nanogrid-in-nanofiber nanostructure increases the chemical anchoring sites for K-pTex, provides sufficient volume buffer space, and constructs highly interconnected conductive microcircuits, further propelling the battery reaction to new heights (3500 cycles at 2.0 A g-1). Furthermore, the full cells further demonstrate the potential for practical applications. This work provides new insights into manipulating K-pTex in the design of ultralong-cycling MTe anodes for advanced PIBs.
RESUMO
Machine learning potential (MLP) has been a popular topic in recent years for its capability to replace expensive first-principles calculations in some large systems. Meanwhile, message passing networks have gained significant attention due to their remarkable accuracy, and a wave of message passing networks based on Cartesian coordinates has emerged. However, the information of the node in these models is usually limited to scalars, and vectors. In this work, we propose High-order Tensor message Passing interatomic Potential (HotPP), an E(n) equivariant message passing neural network that extends the node embedding and message to an arbitrary order tensor. By performing some basic equivariant operations, high order tensors can be coupled very simply and thus the model can make direct predictions of high-order tensors such as dipole moments and polarizabilities without any modifications. The tests in several datasets show that HotPP not only achieves high accuracy in predicting target properties, but also successfully performs tasks such as calculating phonon spectra, infrared spectra, and Raman spectra, demonstrating its potential as a tool for future research.
RESUMO
Large volume strain and slow kinetics are the main obstacles to the application of high-specific-capacity alloy-type metal tellurides in potassium-ion storage systems. Herein, Bi2Te3-x nanocrystals with abundant Te-vacancies embedded in nitrogen-doped porous carbon nanofibers (Bi2Te3-x@NPCNFs) are proposed to address these challenges. In particular, a hierarchical porous fiber structure can be achieved by the polyvinylpyrrolidone-etching method and is conducive to increasing the Te-vacancy concentration. The unique porous structure together with defect engineering modulates the potassium storage mechanism of Bi2Te3, suppresses structural distortion, and accelerates K+ diffusion capacity. The meticulously designed Bi2Te3-x@NPCNFs electrode exhibits ultrastable cycling stability (over 3500 stable cycles at 1.0 A g-1 with a capacity degradation of only 0.01% per cycle) and outstanding rate capability (109.5 mAh g-1 at 2.0 A g-1). Furthermore, the systematic ex situ characterization confirms that the Bi2Te3-x@NPCNFs electrode undergoes an "intercalation-conversion-step alloying" mechanism for potassium storage. Kinetic analysis and density functional theory calculations reveal the excellent pseudocapacitive performance, attractive K+ adsorption, and fast K+ diffusion ability of the Bi2Te3-x@NPCNFs electrode, which is essential for fast potassium-ion storage. Impressively, the assembled Bi2Te3-x@NPCNFs//activated-carbon potassium-ion hybrid capacitors achieve considerable energy/power density (energy density up to 112 Wh kg-1 at a power density of 1000 W kg-1) and excellent cycling stability (1600 cycles at 10.0 A g-1), indicating their potential practical applications.
RESUMO
Seawater-drowning-induced acute lung injury (SD-ALI) is a life-threatening disorder characterized by increased alveolar-capillary permeability, an excessive inflammatory response, and refractory hypoxemia. Perfluorocarbons (PFCs) are biocompatible compounds that are chemically and biologically inert and lack toxicity as oxygen carriers, which could reduce lung injury in vitro and in vivo. The aim of our study was to explore whether the vaporization of PFCs could reduce the severity of SD-ALI in canines and investigate the underlying mechanisms. Eighteen beagle dogs were randomly divided into three groups: the seawater drowning (SW), perfluorocarbon (PFC), and control groups. The dogs in the SW group were intratracheally administered seawater to establish the animal model. The dogs in the PFC group were treated with vaporized PFCs. Probe-based confocal laser endomicroscopy (pCLE) was performed at 3 h. The blood gas, volume air index (VAI), pathological changes, and wet-to-dry (W/D) lung tissue ratios were assessed. The expression of heme oxygenase-1 (HO-1), nuclear respiratory factor-1 (NRF1), and NOD-like receptor family pyrin domain containing-3 (NLRP3) inflammasomes was determined by means of quantitative real-time polymerase chain reaction (qRT-PCR) and immunological histological chemistry. The SW group showed higher lung injury scores and W/D ratios, and lower VAI compared to the control group, and treatment with PFCs could reverse the change of lung injury score, W/D ratio and VAI. PFCs deactivated NLRP3 inflammasomes and reduced the release of caspase-1, interleukin-1ß (IL-1ß), and interleukin-18 (IL-18) by enhancing the expression of HO-1 and NRF1. Our results suggest that the vaporization of PFCs could attenuate SD-ALI by deactivating NLRP3 inflammasomes via the HO-1/NRF1 pathway.
Assuntos
Lesão Pulmonar Aguda , Fluorocarbonos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Fluorocarbonos/farmacologia , Cães , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Água do Mar , Masculino , Afogamento/metabolismo , Modelos Animais de Doenças , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacosRESUMO
Human adenovirus (HAdV) infection is a major cause of respiratory disease, yet no antiviral drugs have been approved for its treatment. Herein, we evaluated the antiviral and anti-inflammatory effects of cyclin-dependent protein kinase (CDK) inhibitor indirubin-3'-monoxime (IM) against HAdV infection in cells and a transgenic mouse model. After evaluating its cytotoxicity, cytopathic effect reduction, antiviral replication kinetics, and viral yield reduction assays were performed to assess the anti-HAdV activity of IM. Quantitative real-time polymerase chain reaction (qPCR), quantitative reverse transcription PCR (qRT-PCR), and western blotting were used to assess the effects of IM on HAdV DNA replication, transcription, and protein expression, respectively. IM significantly inhibited HAdV DNA replication as well as E1A and Hexon transcription, in addition to significantly suppressing the phosphorylation of the RNA polymerase II C-terminal domain (CTD). IM mitigated body weight loss, reduced viral burden, and lung injury, decreasing cytokine and chemokine secretion to a greater extent than cidofovir. Altogether, IM inhibits HAdV replication by downregulating CTD phosphorylation to suppress viral infection and corresponding innate immune reactions as a promising therapeutic agent.
Assuntos
Adenovírus Humanos , Anti-Inflamatórios , Antivirais , Indóis , Oximas , Replicação Viral , Indóis/farmacologia , Animais , Oximas/farmacologia , Humanos , Antivirais/farmacologia , Adenovírus Humanos/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Camundongos , Camundongos Transgênicos , Infecções por Adenovirus Humanos/tratamento farmacológico , Infecções por Adenovirus Humanos/virologia , Células A549 , Citocinas/metabolismo , Fosforilação/efeitos dos fármacosRESUMO
OBJECTIVE: To describe the dynamics changes of sCD163, soluble serum triggering receptor expressed on myeloid cells-1 (sTREM-1), procalcitonin (PCT), and C-reactive protein (CRP) during the course of sepsis, as well as their outcome prediction. PATIENTS AND METHODS: An SIRS group (30 cases) and a sepsis group (100 cases) were involved in this study. Based on a 28-day survival, the sepsis was further divided into the survivors' and nonsurvivors' groups. Serum sTREM-1, sCD163, PCT, CRP, and WBC counts were tested on days 1, 3, 5, 7, 10, and 14. RESULTS: On the ICU admission, the sepsis group displayed higher levels of sTREM-1, sCD163, PCT, and CRP than the SIRS group (P < 0.05). Although PCT and sTREM-1 are good markers to identify severity, sTREM-1 is more reliable, which proved to be a risk factor related to sepsis. During a 14-day observation, sCD163, sTREM-1, PCT, and SOFA scores continued to climb among nonsurvivors, while their WBC and CRP went down. Both sCD163 and SOFA scores are risk factors impacting the survival time. CONCLUSION: With regard to sepsis diagnosis and severity, sTREM-1 is more ideal and constitutes a risk factor. sCD163 is of a positive value in dynamic prognostic assessment and may be taken as a survival-impacting risk factor.
Assuntos
Antígenos CD/sangue , Antígenos de Diferenciação Mielomonocítica/sangue , Proteína C-Reativa/metabolismo , Calcitonina/sangue , Glicoproteínas de Membrana/sangue , Precursores de Proteínas/sangue , Receptores de Superfície Celular/sangue , Receptores Imunológicos/sangue , Sepse/diagnóstico , Adulto , Idoso , Biomarcadores/sangue , Peptídeo Relacionado com Gene de Calcitonina , Progressão da Doença , Feminino , Humanos , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Modelos de Riscos Proporcionais , Reprodutibilidade dos Testes , Fatores de Risco , Sepse/sangue , Receptor Gatilho 1 Expresso em Células MieloidesRESUMO
BACKGROUND: The common adverse effects of linezolid for treating septic patients with gram-positive cocci is anemia and thrombocytopenia, which limit its clinical application. OBJECTIVES: We determined the effects of vitamin B6 adjunctive therapy on linezolid-associated cytopenias, and retrospectively studied 75 septic patients who received at least 7 days of linezolid treatment. METHODS: Patients were divided into a linezolid treatment group (LTG; n = 41) that received linezolid only and a combination treatment group (CTG; n = 34) that received both linezolid and vitamin B6. Each group was further subdivided into those with sepsis and those with severe sepsis. Each patient had red blood cell (RBC), hemoglobin (Hb), hematocrit (Hct), and platelet (PLT) measurements at baseline (day 0) and every other day for 2 weeks during treatment; these parameters were compared between the groups and assessed for time-dependent trends. RESULTS: For patients in the LTG, RBC, Hb, and Hct values showed statistically significant reductions over time, and these values were lower compared with the values in the CTG. The CTG also showed downward trends, except on the first day of treatment. The PLT count also decreased in both groups. Patients with severe sepsis had lower PLT counts in both treatment groups compared with the septic patients. CONCLUSIONS: Septic patients who received a combination treatment of linezolid and vitamin B6 might show positive effects for linezolid-associated reductions in some hematologic parameters (RBC, Hb, and Hct). This combined treatment might also slow PLT reduction, which was more evident in patients with severe sepsis. ClinicalTrials.gov identifier: NCT01295801.
RESUMO
The aim of this in vivo study was to evaluate the feasibility of
Assuntos
Processamento de Imagem Assistida por Computador/métodos , Medições Luminescentes/métodos , Imagem Óptica/métodos , Compostos de Organotecnécio/química , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/química , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/metabolismo , Compostos de Organotecnécio/farmacocinética , Proteoglicanas/química , Proteoglicanas/farmacocinética , Reprodutibilidade dos Testes , Imagem Corporal TotalRESUMO
As a common raw material of industrial products, bisphenol A (BPA) is widely used in the production of food contact materials, and there is a high risk of exposure in food. However, BPA is a well-known endocrine disruptor and poses a serious threat to human health. Herein, a fluorescent sensing platform of BPA based on enzymatic oxidation-mediated fluorescence quenching of silicon nanoparticles (SiNPs) is established and used to the detection of BPA in food species. The SiNPs are prepared with a facile one-step synthesis and emit bright green fluorescence. BPA can be oxidized by horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) to form a product which can quench the fluorescence of SiNPs through electron transfer. There is a good linear relationship between the fluorescence intensity and BPA concentration in the range of 1-100 µM. Therefore, a fluorometry of BPA is established with a low limit of detection (LOD) of 0.69 µM. This method has been applied to the determination of BPA in mineral drinking water, orange juice, and milk with satisfactory results. The fluorescent sensor of BPA based on SiNPs has favorable application foreground in the field of food safety analysis.