Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Plant Physiol ; 194(4): 2086-2100, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37879117

RESUMO

DNA methylation plays a crucial role in the regulation of plant growth and the biosynthesis of secondary metabolites. Danshen (Salvia miltiorrhiza) is a valuable Chinese herbal medicine commonly used to treat cardiovascular diseases; its active ingredients are tanshinones and phenolic acids, which primarily accumulate in roots. Here, we conducted a targeted metabolic analysis of S. miltiorrhiza roots at 3 distinct growth stages: 40 d old (r40), 60 d old (r60), and 90 d old (r90). The contents of tanshinones (cryptotanshinone, tanshinone I, tanshinone IIA, and rosmariquinone) and phenolic acids (rosmarinic acid and salvianolic acid B) gradually increased during plant development. Whole-genome bisulfite sequencing and transcriptome sequencing of roots at the 3 growth stages revealed an increased level of DNA methylation in the CHH context (H represents A, T, or C) context at r90 compared with r40 and r60. Increased DNA methylation levels were associated with elevated expression of various genes linked to epigenetic regulations, including CHROMOMETHYLASE2 (SmCMT2), Decrease in DNA Methylation 1 (SmDDM1), Argonaute 4 (SmAGO4), and DOMAINS REARRANGED METHYLTRANSFERASE 1 (SmDRM1). Moreover, expression levels of many genes involved in tanshinone and salvianolic acid biosynthesis, such as copalyldiphosphate synthase 5 (SmCPS5), cytochrome P450-related enzyme (SmCYP71D464), geranylgeranyl diphosphate synthase (SmGGPPS1), geranyl diphosphate synthase (SmGPPS), hydroxyphenylpyruvate reductase (SmHPPR), and hydroxyphenylpyruvate dioxygenase (SmHPPD), were altered owing to hyper-methylation, indicating that DNA methylation plays an important role in regulating tanshinone and phenolic acid accumulation. Our data shed light on the epigenetic regulation of root growth and the biosynthesis of active ingredients in S. miltiorrhiza, providing crucial clues for further improvement of active compound production via molecular breeding in S. miltiorrhiza.


Assuntos
Abietanos , Hidroxibenzoatos , Salvia miltiorrhiza , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Metilação de DNA , Epigênese Genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Ecotoxicol Environ Saf ; 271: 115940, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218103

RESUMO

Coptis chinensis Franch is a perennial herb from the Ranunculaceae family with a long history of medicinal use. As the medicinal part, the rhizome of coptis often accumulates excessive cadmium (Cd) even at low concentrations in the soil, which not only compromises its medicinal safety but also raises concerns about adverse effects on human health. Therefore, effective strategies are needed to mitigate this accumulation and ensure its safe use in traditional medicine. This study utilized transcriptome profiling and physiological analysis to explore molecular mechanisms associated with ecological significance and the active accumulation of Cd in C. chinensis. The response to Cd in C. chinensis was assessed through RNA sequencing, Cd determination and isoquinoline alkaloid measurement using its roots, stems, and leaves. The transcriptome revealed, a total of 2667, 2998, or 2815 up-regulated deferentially expressed genes in roots, stems or leaves in response to Cd exposure. Furthermore, we identified phenylpropanoid and isoquinoline alkaloid biosynthesis as the key pathways response to Cd exposure, which suggests that C. chinensis may improve its tolerance to Cd through regulating the phenylpropanoid biosynthesis pathway. Under Cd exposure, plant-pathogen interaction in leaves was identified as the key pathway, which indicates that upregulation of genes involved in plant-pathogen interaction could enhance disease resistance in C. chinensis. WGCNA analysis identified WRKY8 (Cluster-55763.31419) and WRKY47 (Cluster-55763.221590) as potential regulators of secondary metabolic synthesis and plant-pathogen interaction pathway in C. chinensis triggered by Cd. The measurement of berberine, coptisine, palmatine, and epiberberine also demonstrated that Cd simulated the four isoquinoline alkaloids in roots. Therefore, our study not only presented a transcriptome expression profiles that revealed significant upregulation of genes involved in metal transport and detoxification pathways but also suggested a possible mechanism to cope with Cd accumulation. This knowledge provides a new insight into gene manipulation for controlling Cd accumulation, enhancing resistance and promoting synthesis of secondary metabolites with potential medicinal properties in other medicinal plant species.


Assuntos
Alcaloides , Cádmio , Humanos , Cádmio/toxicidade , Coptis chinensis , Resistência à Doença , Alcaloides/análise , Perfilação da Expressão Gênica , Transcriptoma , Isoquinolinas
3.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396824

RESUMO

Sasanquasaponin (SQS), a secondary metabolite that is derived from Camellia seeds, reportedly possesses notable biological properties. However, the anti-inflammatory effects of SQS and its underlying mechanisms remain poorly explored. Herein, we aimed to investigate the anti-inflammatory properties of SQS against lipopolysaccharide (LPS)-induced inflammatory responses in RAW264.7 cells, focusing on the nuclear factor-κB (NF-κB) and MAPK signaling pathways. SQS was isolated using a deep eutectic solvent and D101 macroporous adsorption resin and analyzed using high-performance liquid chromatography. The viability of LPS-stimulated RAW264.7 was assessed using the CCK-8 assay. The presence of reactive oxygen species (ROS) was evaluated using 2',7'-dichlorofluorescein-diacetate. The expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) were detected using reverse transcription-quantitative PCR and ELISA. Western blot was performed to analyze the protein expression of LPS-induced RAW264.7 cells. Herein, SQS exhibited anti-inflammatory activity: 30 µg/mL of SQS significantly reduced ROS generation, inhibited the LPS-induced expression of iNOS and COX-2, and attenuated the production of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α. The anti-inflammatory activity was potentially mediated by inhibiting the phosphorylation of IκBα and p65 in the NF-κB signaling pathway and the phosphorylation of ERK and JNK in the MAPK signaling pathway. Accordingly, SQS could inhibit inflammation in LPS-induced RAW264.7 cells by suppressing the NF-κB and MAPK signaling pathways. This study demonstrated the potential application of SQS as an anti-inflammatory agent.


Assuntos
NF-kappa B , Saponinas , Fator de Necrose Tumoral alfa , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2/metabolismo , Interleucina-6/farmacologia , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo
4.
BMC Genomics ; 24(1): 478, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37612625

RESUMO

BACKGROUND: Heat shock protein 20 (HSP20) is a member of the heat stress-related protein family, which plays critical roles in plant growth, development, and response to abiotic stresses. Although many HSP20 genes have been associated with heat stress in numerous types of plants, little is known about the details of the HSP20 gene family in Coix. To investigate the mechanisms of the ClHSP20 response to heat and drought stresses, the ClHSP20 gene family in Coix was identified and characterized based on genome-wide analysis. RESULTS: A total of 32 putative ClHSP20 genes were identified and characterized in Coix. Phylogenetic analysis indicated that ClHSP20s were grouped into 11 subfamilies. The duplicated event analysis demonstrated that tandem duplication and segment duplication events played crucial roles in promoting the expansion of the ClHSP20 gene family. Synteny analysis showed that Coix shared the highest homology in 36 HSP20 gene pairs with wheat, followed by 22, 19, 15, and 15 homologous gene pairs with maize, sorghum, barley, and rice, respectively. The expression profile analysis showed that almost all ClHSP20 genes had different expression levels in at least one tissue. Furthermore, 22 of the 32 ClHSP20 genes responded to heat stress, with 11 ClHSP20 genes being significantly upregulated and 11 ClHSP20 genes being significantly downregulated. Furthermore, 13 of the 32 ClHSP20 genes responded to drought stress, with 6 ClHSP20 genes being significantly upregulated and 5 ClHSP20 genes being significantly downregulated. CONCLUSIONS: Thirty-two ClHSP20 genes were identified and characterized in the genome of Coix. Tandem and segmental duplication were identified as having caused the expansion of the ClHSP20 gene family. The expression patterns of the ClHSP20 genes suggested that they play a critical role in growth, development, and response to heat and drought stress. The current study provides a theoretical basis for further research on ClHSP20s and will facilitate the functional characterization of ClHSP20 genes.


Assuntos
Coix , Proteínas de Choque Térmico , Animais , Secas , Filogenia , Estro
5.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047349

RESUMO

To fully explore the influence mechanism of interactions between different monomer units of proanthocyanidins (PAs) on biological activity, a path analysis model of the PA structure-activity relationship was proposed. This model subdivides the total correlation between each monomer unit and activity into direct and indirect effects by taking into account not only each monomer unit but also the correlation with its related monomer units. In addition, this method can determine the action mode of each monomer unit affecting the activity by comparing the direct and total indirect effects. Finally, the advantage of this model is demonstrated through an influence mechanism analysis of Rhodiola crenulata PA monomer units on antioxidant and anti-diabetes activities.


Assuntos
Proantocianidinas , Rhodiola , Proantocianidinas/farmacologia , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia
6.
Molecules ; 28(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38138641

RESUMO

Kitagawia praeruptora (Dunn) Pimenov, commonly known as Qianhu in China, is a widely used folk Chinese herbal medicine. This article reviews its botanical traits, ethnopharmacology, cultivation techniques, identification, phytochemical compositions, and pharmacological effects. Over 70 coumarin compounds, including simple coumarins, pyranocoumarins, and furanocoumarins, have been isolated within this plant. Additionally, K. praeruptora contains other components such as flavonoids, fatty acids, benzoic acids, and sterols. This information highlights the importance of utilizing active ingredients and excavating pharmacological effects. With its remarkable versatility, K. praeruptora exhibits a wide range of pharmacological effects. It has been found to possess expectorant and bronchodilator properties, cardiovascular protection, antimicrobial and antioxidant activities, anti-tumor effects, and even antidiabetic properties. It is recommended to focus on the development of new drugs that leverage the active ingredients of K. praeruptora and explore its potential for new clinical applications and holistic utilization.


Assuntos
Apiaceae , Medicamentos de Ervas Chinesas , Piranocumarinas , Medicina Tradicional Chinesa/métodos , Etnofarmacologia , Medicamentos de Ervas Chinesas/química , Cumarínicos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia
7.
Molecules ; 28(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37049789

RESUMO

Tetrastigma hemsleyanum Diels et Gilg. (T. hemsleyanum) is an economically and medicinally valuable species within the genus Tetrastigma. However, the material basis of its pharmacological action and the biomarkers associated with its anti-cancer and anti-inflammatory effects are still unclear. Additionally, the T. hemsleyanum industry cannot grow because there is a lack of a scientific, universal, and measurable quality control system. This study aimed to explore the chemical basis quality markers related to the anti-cancer and anti-inflammatory effects of T. hemsleyanum to establish an effective quality evaluation method. UPLC-Q-TOF-MSE fingerprint profiles of T. hemsleyanum from different origins were established. Pharmacodynamic studies used HepG2 and HuH-7 cells and LPS-induced RAW264.7 to evaluate the anti-tumor and anti-inflammatory effects of the active ingredients. The spectrum-effect relationships between UPLC fingerprints and anti-cancer and anti-inflammatory activities were evaluated using PCA and PLSR statistical methods. Moreover, docking analysis was performed to identify specific active biomarkers with molecular targets associated with cancer and inflammation. Chlorogenic acid, quinic acid, catechin, kaempferol 3-rutinoside, apigenin-8-C-glucoside, and linolenic acid were associated with anticancer activity, while chlorogenic acid, quercetin, quinic acid, kaempferol 3-rutinoside, rutinum, apigenin-8-C-glucoside, and linolenic acid were associated with anti-inflammatory activity. The spectrum-effect relationship of T. hemsleyanum was successfully established, and the biomarkers for anti-cancer and anti-inflammatory effects were preliminary confirmed. These findings provide a theoretical basis for the elucidation of the substance basis of T. hemsleyanum and lay the foundation for its rapid identification, quality control, industrial research, and utilization.


Assuntos
Neoplasias , Vitaceae , Humanos , Quempferóis , Apigenina , Ácido Clorogênico , Ácido Quínico , Ácido alfa-Linolênico , Anti-Inflamatórios/farmacologia , Vitaceae/química , Glucosídeos
8.
BMC Microbiol ; 22(1): 191, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931950

RESUMO

BACKGROUND: Huperzine A (Hup A) has attracted considerable attention as an effective therapeutic candidate drug used to treat Alzheimer's disease. Whereas, the production of Hup A from wild plants faced a major challenge, which is the wild Huperzia Serrata harbor a low Hup A content, has a long-life cycle, and has a small yield. At present, several reports showed that Hup A is produced by various endophytic fungal strains isolated from H. serrata, thereby providing an alternative method to produce the compound and reduce the consumption of this rare and endangered plant. However, till now, very few comprehensive studies are available on the biological diversity and structural composition of endophytic fungi and the effects of endophytic fungi on the Hup A accumulation in H. serrata. RESULTS: In this research, the composition and diversity of fungal communities in H. serrata were deciphered based on high-throughput sequencing technology of fungal internal transcribed spacer regions2 (ITS2). The correlation between endophytic fungal community and Hup A content was also investigated. Results revealed that the richness and the diversity of endophytic fungi in H. serrata was various according to different tissues and different ecological areas. The endophytic fungal communities of H. serrata exhibit species-specific, ecological-specific, and tissue-specific characteristics. There are 6 genera (Ascomycota_unclassified, Cyphellophora, Fungi_unclassified, Sporobolomyces, and Trichomeriaceae_unclassified) were significantly positively correlated with Hup A content in all two areas, whereas, there are 6 genera (Auricularia, Cladophialophora, Cryptococcus, Mortierella, and Mycena) were significantly negatively correlated with Hup A content of in all two areas. CONCLUSIONS: This study indicated a different composition and diverse endophytic fungal communities in H. serrata from different organs and ecological areas. The current study will provide the realistic basis and theoretical significance for understanding the biological diversity and structural composition of endophytic fungal communities in H. serrata, as well as providing novel insights into the interaction between endophytic fungi and Hup A content.


Assuntos
Ascomicetos , Basidiomycota , Huperzia , Micobioma , Alcaloides , Biodiversidade , Endófitos , Fungos , Huperzia/microbiologia , Sesquiterpenos
9.
J Med Virol ; 94(6): 2727-2735, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35075662

RESUMO

The chronic hepatitis B virus (HBV) infection is a worldwide public health problem, which cannot be cured by current therapeutics due to the persistence of viral CCC DNA in the infected hepatocytes. Screening from medicinal herbs for anti-HBV activities showed that the ethanol extract from Ranunculus japonicus Thunb. could decrease the production of HBV e antigen (HBeAg). Further study showed that the extract had no effect on core protein expression but significantly reduced the efficiency of viral capsid assembly. The levels of viral pgRNA and total core DNA were not affected significantly. However, the ratio of RC DNA/SS DNA decreased, indicating that the conversion of RC DNA from SS DNA was delayed by the extract. More interestingly, though similar levels of RC DNA were accumulated, the CCC DNA level and its formation efficiency were reduced significantly, which was also consistent with the decreased level of HBeAg, indicating that R. japonicus Thunb. extract could inhibit the CCC DNA formation. Together, this study found that R. japonicus Thunb. extract could inhibit HBV replication at multiple steps, especially showed significant inhibitory effects on capsid assembly and CCC DNA formation.


Assuntos
Hepatite B Crônica , Hepatite B , Ranunculus , DNA Circular , DNA Viral/genética , Etanol/metabolismo , Etanol/farmacologia , Antígenos E da Hepatite B/metabolismo , Vírus da Hepatite B/genética , Humanos , Extratos Vegetais/farmacologia , Ranunculus/genética , Ranunculus/metabolismo , Replicação Viral
10.
J Med Virol ; 94(12): 5987-5999, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36000452

RESUMO

Chronic hepatitis B virus (HBV) infection is an important public health problem. Polygonum perfoliatum L. is a traditional medicinal herb and has been reported to have pharmacological activities such as anti-inflammatory, antibacterial, and antiviral. In this study, the antiviral activities and mechanisms of Polygonum perfoliatum L. extract against HBV and the effective components were investigated. The results showed that the total extract of Polygonum perfoliatum L. reduced the levels of HBV e antigen (HBeAg) secretion and the viral covalently closed circular DNA (CCC DNA) formation, but had little or no negative effects on viral capsid assembly and pregenomic RNA packaging. Further fractionation showed that the water extract (WE) fraction exerted comparable anti-HBV activities with the total extract, especially in inhibiting the CCC DNA formation and HBeAg production, indicating that the effective antiviral components are mainly distributed in this fraction. Further study showed that the phenolic acids constituents, protocatechuic acid, and gallic acid, but not ethyl caffeate, which is reported enriched in the WE fraction, showed strong anti-HBV activities in inhibiting viral core DNA synthesis, CCC DNA formation, and HBeAg production. These results suggested that the Polygonum perfoliatum L. total extract and the related phenolic acids like protocatechuic acid and gallic acid could inhibit HBV replication and also indicated the potential utility of Polygonum perfoliatum L. and related constituents as sources of novel antivirals against HBV.


Assuntos
Hepatite B Crônica , Hepatite B , Polygonum , Antibacterianos/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , DNA Circular , DNA Viral , Ácido Gálico/farmacologia , Ácido Gálico/uso terapêutico , Antígenos E da Hepatite B , Vírus da Hepatite B/genética , Humanos , Hidroxibenzoatos , Polygonum/genética , RNA/farmacologia , RNA/uso terapêutico , Replicação Viral , Água/farmacologia
11.
Biopolymers ; 113(6): e23490, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35460266

RESUMO

Polygonati rhizoma (PR), a traditional medical and edible product, is rich in polysaccharides and exhibits physiological activity, including antioxidant, hypoglycemic and hypolipidemic properties. Neutral polysaccharides have been reported to be one of the main active ingredients of Polygonatum, with many of these fractions being responsible for the biological activity. This behavior was shown to be closely connected to the chemical structure, monosaccharide composition, and glycosidic bond type. There are few reports on the chemical constituents of the neutral polysaccharides from different sources of PR. In this study, neutral polysaccharides of PR from four different regions of China (Chun'an (Zhejiang), Xixia (Henan), Danfeng (Shanxi), and Pan'an (Zhejiang)), named CAZJ, XXHN, DFSX, and PAZJ, respectively, were isolated by anion-exchange and gel-permeation chromatography. Structures of the four polysaccharides were investigated. The results showed that all of them were mainly glucose and mannose, while the monosaccharide composition and content of polysaccharides from different sources varied. The molecular weights of CAZJ, XXHN, DFSX, and PAZJ were 14.119, 22.352, 18.127, and 15.699 kDa, respectively. Infrared spectra illustrated the existence of α-glycosidic bond and ß-glycosidic bond in the polysaccharides. CAZJ, XXHN, and DFSX possessed a pyranose ring structure, whereas PAZJ had a furanose ring structure. Congo red test indicated that XXHN, DFSX, and PAZJ had a triple-helix structure. X-ray diffraction showed that the polysaccharides consisted of crystalline and amorphous regions. All four polysaccharides exhibited different degrees of antioxidant and hypoglycemic activities with a dose-dependent manner in the 1.0-10.0 mg/mL concentration range. Correlation analysis revealed that the bioactivities of polysaccharides was significantly related to monosaccharide composition, uronic acid, and protein content. The results suggested that neutral polysaccharides could be used as potential natural antioxidants and hypoglycemic agents for functional and nutraceutical applications.


Assuntos
Polygonatum , Antioxidantes/química , Antioxidantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Monossacarídeos , Polygonatum/química , Polissacarídeos/química
12.
Biochem Genet ; 60(5): 1547-1566, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35059935

RESUMO

As a traditional Chinese herb, the rhizomes of Polygonatum sibiricum Red. are rich in various compounds which have plenty of pharmacological applications and biological activities. Among them, Polygonatum sibiricum polysaccharides (PSP) are the main active ingredients and exhibit a broad range of pharmacological. Based on previous researches, identifying genes involved in PSP biosynthesis will help delineate such pathway at the molecular level. In that case, we performed RNA sequencing analysis for two sections of P. sibiricum Red.'s rhizomes significantly different in PSP content. A total of 435,858 unigenes were obtained by assembling transcripts from both sections and 29,548 (6.77%) ones were annotated in all seven public databases. Analyzing count data of RNA-seq, 13,460 differential expression genes (DEGs) between two sections of rhizomes were acquired. After DEGs were mapped to KEGG databases, twelve represented KEGG pathways related to PSP biosynthesis were summed up. And most DEGs were assigned to the pathway of "Starch and sucrose metabolism". Finally, seventeen candidate genes whose expression levels were related to the polysaccharide content, were considered involving PSP biosynthesis in P. sibiricum Red. The present study lays a foundation of researching the molecular mechanisms of PSP biosynthesis.


Assuntos
Polygonatum , Perfilação da Expressão Gênica , Genes de Plantas , Polygonatum/genética , Polissacarídeos/genética , Polissacarídeos/farmacologia , Rizoma/genética
13.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232915

RESUMO

Uncaria, a perennial vine from the Rubiaceae family, is a typical Chinese traditional medicine. Currently, uncertainty exists over the Uncaria genus' evolutionary relationships and germplasm identification. The complete chloroplast genomes of four Uncaria species mentioned in the Chinese Pharmacopoeia and Uncaria scandens (an easily confused counterfeit) were sequenced and annotated. The findings demonstrated that the whole chloroplast genome of Uncaria genus is 153,780-155,138 bp in full length, encoding a total of 128-131 genes, containing 83-86 protein-coding genes, eight rRNAs and 37 tRNAs. These regions, which include eleven highly variable loci and 31-49 SSRs, can be used to create significant molecular markers for the Uncaria genus. The phylogenetic tree was constructed according to protein-coding genes and the whole chloroplast genome sequences of five Uncaria species using four methods. The topology of the two phylogenetic trees showed no difference. The sequences of U. rhynchophylla and U. scandens are clustered in one group, while the U. hirsuta and U. macrophylla are clustered in another group. U. sessilifructus is clustered together with the above two small clades. New insights on the relationship were revealed via phylogenetic research in five Uncaria species. This study will provide a theoretical basis for identifying U. rhynchophylla and its counterfeits, as well as the species of the Uncaria genus. This research provides the initial chloroplast genome report of Uncaria, contributes to elucidating the chloroplast genome evolution of Uncaria in China.


Assuntos
Genoma de Cloroplastos , Uncaria , China , Medicina Tradicional Chinesa , Filogenia
14.
Molecules ; 27(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36500395

RESUMO

To find the best post-harvest processing method for Scutellaria baicalensis Georgi, we explored the effects of fresh and traditional processing on the active ingredients in S. baicalensis and evaluated three drying techniques to determine the optimal post-harvest processing technique. We quantified four active ingredients (baicalin, baicalein, wogonoside, and wogonin) in 16 different processed S. baicalensis samples that were harvested from Tongchuan, Shaanxi province, by HPLC (high-performance liquid chromatography). In addition, we performed a similarity analysis (SA), a hierarchical cluster analysis (HCA), and a principal component analysis (PCA) on the common peaks in S. baicalensis that were identified by the HPLC fingerprints. Compared to the traditional processing method, the fresh processing method could better preserve the four active ingredients in S. baicalensis, meanwhile, the similarity analysis (0.997-1.000) showed that the fresh processing was more similar to the traditional processing, and it did not change the type of 18 active ingredients in S. baicalensis. The cluster analysis results showed that the shade drying and sun drying methods results were more similar to each other, while the oven drying (60 °C) method results were clustered into one category. According to the results of the principal component analysis, S9, S7, and S8 had higher scores, and they were relatively well processed under these processing settings. Fresh processing could be an alternative to traditional processing; the moisture content was reduced to 24.38% under the sun drying condition, and it was the optimal post-harvest processing solution for S. baicalensis.


Assuntos
Flavonoides , Scutellaria baicalensis , Scutellaria baicalensis/química , Flavonoides/análise , Cromatografia Líquida de Alta Pressão , Análise de Componente Principal , Dessecação
15.
Molecules ; 27(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956808

RESUMO

Compared to the traditional processing method, fresh processing can significantly enhance the preservation of biologically active ingredients and reduce processing time. This study evaluated the influences of fresh and traditional processing based on different drying conditions (sun drying, oven drying and shade drying) on the active ingredients in the roots and rhizomes of S. miltiorrhiza. High-performance liquid chromatography (HPLC) was utilized to determine the contents of six active ingredients in the roots and rhizomes of S. miltiorrhiza. The data were analyzed by fingerprint similarity evaluation, hierarchical cluster analysis (HCA) and principal component analysis (PCA). The results suggest that compared to the traditional processing method, the fresh processing method may significantly increase the preservation of biologically active ingredients. Furthermore, the findings demonstrated that among the three drying methods under fresh processing conditions, the shade-drying (21.02-26.38%) method is most beneficial for retaining the active ingredients in the roots and rhizomes of S. miltiorrhiza. Moreover, the fingerprint analysis identified 17 common peaks, and the similarity of fingerprints among samples processed by different methods ranged from 0.989 to 1.000. Collectively, these results suggest novel processing methods that may improve the yield of active ingredients for S. miltiorrhiza and may be implemented for industrial production.


Assuntos
Salvia miltiorrhiza , Cromatografia Líquida de Alta Pressão/métodos , Dessecação , Raízes de Plantas/química , Rizoma , Salvia miltiorrhiza/química
16.
Zhongguo Zhong Yao Za Zhi ; 47(11): 3118-3124, 2022 Jun.
Artigo em Zh | MEDLINE | ID: mdl-35718537

RESUMO

To reveal the law of the proportion consistency of the active components in Chinese medicine and explore a new way to evaluate the quality of Chinese medicine, the present study investigated the content of tanshinone Ⅱ_A, cryptotanshinone, tanshinone Ⅰ, salvianolic acid B, rosmarinic acid, caffeic acid, and lithospermic acid in 895 samples of Salvia miltiorrhiza from 87 literature articles. The samples with salvianolic acid B and tanshinones(total content of tanshinone Ⅱ_A, tanshinone Ⅰ, and cryptotanshinone) meeting the requirements of Chinese Pharmacopoeia were analyzed for proportion consistency of components, and the proportion distribution of components was compared. The results showed that the proportions in and between tanshinones and salvianolic acids were stable. The content ratios of cryptotanshinone to tanshinone Ⅱ_A, rosmarinic acid to salvianolic acid B, and salvianolic acid B to tanshinone Ⅱ_A fluctuated from 0.1 to 1.7, from 0.02 to 0.14, and from 10 to 60, respectively. It indicated that the content proportions of different components were not fixed, but fluctuated in a certain range. The fluctuation range of components in the same group was small, but that in different groups was large. The content proportions of active components were stable for Chinese medicinal materials with fixed varieties or origins. The samples whose content proportions were out of the fluctuation ranges were generally unqualified medicinal materials. We proposed a "three-dimensional multi-component" quality evaluation model of Chinese medicine based on the above findings. Specifically, "three-dimensional" means to accurately evaluate the quality of Chinese medicine from varieties, proportions, and content of active components, and "multi-component" means to highlight the information of multiple components in Chinese medicine, especially the quality markers and equivalent component groups. The proportion of components in Chinese medicine can be used as an important index for the quality evaluation of Chinese medicine. The proportions of active components are stable in Chinese medicinal materials with fixed varieties or places of origin.


Assuntos
Salvia miltiorrhiza , Medicina Tradicional Chinesa , Raízes de Plantas
17.
Planta ; 253(5): 93, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33826012

RESUMO

MAIN CONCLUSION: Genome-wide identification, expression analysis of the MYC family in Camellia sinensis, and potential functional characterization of CsMYC2.1 have laid a solid foundation for further research on CsMYC2.1 in jasmonate (JA)-mediated response. Myelocytomatosis (MYC) of basic helix-loop-helix (bHLH) plays a major role in JA-mediated plant growth and developmental processes through specifically binding to the G-box in the promoters of their target genes. In Camellia sinensis, studies on the MYC gene family are limited. Here, we identified 14 C. sinensis MYC (CsMYC) genes, and further analyzed the evolutionary relationship, gene structure, and motif pattern among them. The expression patterns of these CsMYC genes in different tissues suggested their important roles in diverse function in tea plant. Four MYC transcription factors with the highest homology to MYC2 in Arabidopsis were localized in the nucleus. Two of them, named CsMYC2.1 and CsMYC2.2, exhibited transcriptional self-activating activity, and, therefore, could significantly activate the promoter containing G-box motif, whereas CsJAM1.1 and CsJAM1.2 lack the transcriptional self-activating activity, indirectly mediating the JA pathway through interacting with CsMYC2.1 and CsMYC2.2. Furthermore, Yeast Two-Hybrid (Y2H) and Bimolecular Fluorescent Complimentary (BiFC) assays showed that CsMYC2.1 could interact with CsJAZ3/7/8 proteins. Genetically, the complementation of CsMYC2.1 in myc2 mutants conferred the ability to restore the sensitivity to JA signals. The results provide a comprehensive characterization of the 14 CsMYCs in C. sinensis, establishing a solid foundation for further research on CsMYCs in JA-mediated response.


Assuntos
Proteínas de Arabidopsis , Camellia sinensis , Proteínas de Arabidopsis/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Oxilipinas , Plantas Geneticamente Modificadas/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/genética
18.
J Exp Bot ; 72(13): 4915-4929, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33961691

RESUMO

Phenolic acids are the major secondary metabolites and significant bioactive constituents of the medicinal plant Salvia miltiorrhiza. Many enzyme-encoding genes and transcription factors involved in the biosynthesis of phenolic acids have been identified, but the underlying post-translational regulatory mechanisms are poorly understood. Here, we demonstrate that the S. miltiorrhiza Kelch repeat F-box protein SmKFB5 physically interacts with three phenylalanine ammonia-lyase (PAL) isozymes and mediates their proteolytic turnover via the ubiquitin-26S proteasome pathway. Disturbing the expression of SmKFB5 reciprocally affected the abundance of SmPAL protein and the accumulation of phenolic acids, suggesting that SmKFB5 is a post-translational regulator responsible for the turnover of PAL and negatively controlling phenolic acids. Furthermore, we discovered that treatment of the hairy root of S. miltiorrhiza with methyl jasmonate suppressed the expression of SmKFB5 while inducing the transcription of SmPAL1 and SmPAL3. These data suggested that methyl jasmonate consolidated both transcriptional and post-translational regulation mechanisms to enhance phenolic acid biosynthesis. Taken together, our results provide insights into the molecular mechanisms by which SmKFB5 mediates the regulation of phenolic acid biosynthesis by jasmonic acid, and suggest valuable targets for plant breeders in tailoring new cultivars.


Assuntos
Salvia miltiorrhiza , Regulação da Expressão Gênica de Plantas , Hidroxibenzoatos , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Raízes de Plantas/metabolismo , Salvia miltiorrhiza/metabolismo
19.
Molecules ; 26(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919259

RESUMO

Proanthocyanidins are natural glycosidase inhibitors with excellent antioxidant activity. This study aims to search for a new source of proanthocyanidins for the prevention and treatment of type 2 diabetes with higher content and better activity and get their structure elucidated. First, the total proanthocyanidins contents (TOPCs), antioxidant activity, antidiabetic activity of seven common Polygonaceae plants were analyzed and compared. Then proanthocyanidins from the rhizome of Fagopyrum dibotrys were purified, and the detailed structure was comprehensively analyzed by ultraviolet visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), 13C nuclear magnetic resonance spectroscopy (13C NMR), reversed-phase high-performance liquid chromatography-electrospray mass spectrometry (RP-HPLC-ESI-MS), and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). The rhizome of F. dibotrys showed the highest TOPCs, the strongest antioxidant, and antidiabetic activities; the TOPCs, antioxidant and antidiabetic activities were all very significantly positively correlated. Proanthocyanidins purified from the rhizome of F. dibotrys showed better antidiabetic activity than grape seed proanthocyanidins (GsPs). Seventy-two proanthocyanidins from trimer to undecamer with a mean degree of polymerization (mDP) of about 5.02 ± 0.21 were identified with catechin and epicatechin as the dominant monomers. Conclusion: Proanthocyanidins are the main antioxidant and antidiabetic active substances of F. dibotrys and are expected to be developed into potential antioxidant and hypoglycemic products.


Assuntos
Antioxidantes/farmacologia , Fagopyrum/química , Hipoglicemiantes/farmacologia , Proantocianidinas/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proantocianidinas/química , Proantocianidinas/isolamento & purificação , Rizoma/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
BMC Genomics ; 21(1): 727, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33106159

RESUMO

BACKGROUND: Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants with high medicinal value. Gibberellins are growth-promoting phytohormones that regulate numerous growth and developmental processes in plants. However, their role on the secondary metabolism regulation has not been investigated. RESULTS: In this study, we found that gibberellic acid (GA) can promote hairy roots growth and increase the contents of tanshinones and phenolic acids. Transcriptomic sequencing revealed that many genes involved in the secondary metabolism pathway were the GA-responsive. After further analysis of GA signaling pathway genes, which their expression profiles have significantly changed, it was found that the GRAS transcription factor family had a significant response to GA. We identified 35 SmGRAS genes in S. miltiorrhiza, which can be divided into 10 subfamilies. Thereafter, members of the same subfamily showed similar conserved motifs and gene structures, suggesting possible conserved functions. CONCLUSIONS: Most SmGRAS genes were significantly responsive to GA, indicating that they may play an important role in the GA signaling pathway, also participating in the GA regulation of root growth and secondary metabolism in S. miltiorrhiza.


Assuntos
Giberelinas , Salvia miltiorrhiza , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Salvia miltiorrhiza/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA