Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 62(31): 12468-12479, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37488692

RESUMO

The self-reduction mechanism in pyrophosphate phosphors is currently explained through nonequivalent substitution for charge compensation. Nevertheless, the impact of oxygen vacancies on the self-reduction enhancement requires further investigation. Herein, heterovalent Ba1-xZn1-yP2O7:xEu2+/3+, yMg phosphors with rigid structures were prepared through conventional solid-phase technology in air. The cation substitution strategy leads to different chemistry electronegativity and adjustable crystal field environments and creates vacancy defects. Crystal structure and component analysis indicate the gradual phase segregation change from BaZnP2O7 to BaMgP2O7 with increasing Mg2+ content. The CIE coordinates that are tuned from (0.514, 0.334) to (0.326, 0.152) and realize color-tunable emission from red-orange to blue-violet can be used as multicolor functional materials. Besides, the phosphor demonstrates its maximum Sa of 0.4725% K-1 (498 K) and Sr of 1.376% K-1 (423 K). These results demonstrate that the phosphors have the potential for contactless optical temperature measurement and anticounterfeiting. This work not only investigates the self-reduction of the Eu3+ → Eu2+ phenomenon but also provides a supplementary explanation and data support to complete the effect of the oxygen vacancy on self-reduction.

2.
Inorg Chem ; 62(46): 19070-19079, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37939251

RESUMO

This research focused on the supramolecular self-assembly of organic fluorescent molecules on organically modified layered silicate minerals to design and prepare layered nanocomposites with excellent fluorescence properties. Aromatic hydrocarbons are hydrophobic and poorly loaded on the hydrophilic surface of layered silicate minerals, but they are easily captured by an organically modified mineral surface. Montmorillonite (MMT) and saponite (SAP), typical 2:1 type layered silicate minerals with different octahedral cations, were modified with the cationic surfactant octadecyl trimethylammonium chloride (OTAC) and loaded with pyrene (an aromatic hydrocarbon dye) with different molar ratios to the cationic surfactant by supramolecular self-assembling to construct fluorescent nanocomposites. The effect of pyrene concentration and the octahedral cation of the 2:1 type layered silicate minerals on photoluminescence properties was investigated. The fluorescence spectra of the nanocomposites prepared under low pyrene concentrations showed two bands at around 400 and 470 nm, corresponding to the monomer and excimer emissions; the band intensity of the excimer shoots up with the increase of pyrene concentration, reflecting different contributions from monomer and dimer species and the formation of radical aggregates. The excellent heat resistance of the layered silicate structure can effectively protect pyrene molecules from external environmental influences.

3.
Angew Chem Int Ed Engl ; 62(19): e202302050, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36914574

RESUMO

All-solid-state Z-Scheme photocatalysts have attracted significant attention due to their great potential for solar fuel production. However, delicately coupling two individual semiconductors with a charge shuttle by a material strategy remains a challenge. Herein, we demonstrate a new protocol of natural Z-Scheme heterostructures by strategically engineering the component and interfacial structure of red mud bauxite waste. Advanced characterizations elucidated that the hydrogen-induced formation of metallic Fe enabled the effective Z-Scheme electron transfer from γ-Fe2 O3 to TiO2 , leading to the significantly boosted spatial separation of photo-generated carriers for overall water splitting. To the best of our knowledge, it is the first Z-Scheme heterojunction based on natural minerals for solar fuel production. Thus our work provides a new avenue toward the utilization of natural minerals for advanced catalysis applications.

4.
Sensors (Basel) ; 21(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34960453

RESUMO

This paper proposes a calibration method for a self-rotating, linear-structured-light (LSL) scanning, three-dimensional reconstruction system based on plane constraints. The point cloud of plane target collected by the self-rotating, LSL scanning, 3D reconstruction system should be constrained to the basic principle of the plane equation; it can quickly and accurately calibrate the position parameters between the coordinate system of the LSL module and the coordinate system of the self-rotating, LSL scanning, 3D reconstruction system. Additionally, the transformation equation could be established with the calibrated optimal position parameters. This paper obtains the above-mentioned position parameters through experiments and uses the calibrated self-rotating, LSL scanning, 3D reconstruction system to perform three-dimensional scanning and reconstruction of the test piece. The experimental results show that the calibration method can effectively improve the measurement accuracy of the system.

5.
Plasmid ; 98: 52-55, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-30201136

RESUMO

RNA interference (RNAi), based on hairpin RNA (hpRNA) expression, plays an important role in functional analysis of plant genes. Traditional methods for making RNAi constructs usually involve multiple time-consuming cloning steps. We have developed a Gateway-compatible binary vector for RNAi-mediated gene knockdown in plants from pCAMBIA2301 and pHANNIBAL vectors. The new plant RNAi binary vector, named pCAMBIA2301-GW-RNAi, has two inverted repeated Gateway cassettes driven by the cauliflower mosaic virus 35S (CaMV 35S) promoter. This enables site-specific recombination at two sites by one Gateway LR reaction without restriction enzymes and ligases. The pCAMBIA2301-GW-RNAi vector's effectiveness was evaluated by Agrobacterium-mediated transient co-expression assays of overexpression and silencing constructs of HvCEBiP in Nicotiana benthamiana followed by western blot analysis. Obtained results show that the developed RNAi vector successfully knocked down 35S-driven expression of HvCEBiP, as expression levels of the encoded HvCEBiP protein were significantly reduced.


Assuntos
Agrobacterium/genética , Técnicas de Silenciamento de Genes/métodos , Genes de Plantas , Vetores Genéticos , Nicotiana/genética , Plasmídeos/genética , Interferência de RNA , Nicotiana/microbiologia
6.
Phys Chem Chem Phys ; 18(23): 15545-54, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27165439

RESUMO

The lutetium containing nitride apatite Lu5(SiO4)3N was prepared by a solid state reaction at high temperature for the first time. Rietveld refinement indicated that the Lu5(SiO4)3N compound has a hexagonal space group of P63/m with cell parameters a = b = 9.700 Å and c = 7.238 Å. Additionally, the results revealed that there are two distinct lutetium sites in the Lu5(SiO4)3N host lattice, i.e. a Lu(1) site with nine coordination (Wyckoff site 4f) and a Lu(2) site with seven coordination (Wyckoff site 6h). Furthermore, the ratio of the number of Lu atoms in Lu(1) and Lu(2) sites is 3 : 2. The band gap for Lu5(SiO4)3N was determined to be 4.12 eV based on the density functional theory (DFT). In the Ce(3+) doped Lu5(SiO4)3N:0.03Ce(3+) compound, the emission peak centered at 462 nm was observed with the Commission International de I'Eclairage (CIE) coordinates of (0.148, 0.184), indicating blue-emission. Remarkably, in Ce(3+) and Tb(3+) co-doped Lu4.97-y(SiO4)3N:0.03Ce(3+),yTb(3+) compounds, the color-tunability was observed with increasing Tb(3+) co-doping rate on moving from blue at Tb(3+) = 0.00 to green at Tb = 0.09, due to the energy transfer from Ce(3+) to Tb(3+) ions being matched well with the decay curve results. Under the excitation at 359 nm, the absolute quantum efficiency (QE) for Lu5(SiO4)3N:0.03Ce(3+) was determined to be 42.13%. This phosphor material could be a platform for modeling a new phosphor and application in the solid-state lighting field.

7.
Mol Cell Proteomics ; 13(1): 204-19, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24169622

RESUMO

The unicellular photosynthetic model-organism cyanobacterium Synechocystis sp. PCC6803 can grow photoautotrophically using CO2 or heterotrophically using glucose as the sole carbon source. Several pathways are involved in carbon metabolism in Synechocystis, and the concerted regulation of these pathways by numerous known and unknown genes is critical for the survival and growth of the organism. Here, we report that a hypothetical protein encoded by the open reading frame slr0110 is necessary for heterotrophic growth of Synechocystis. The slr0110-deletion mutant is defective in glucose uptake, heterotrophic growth, and dark viability without detectable defects in autotrophic growth, whereas the level of photosystem II and the rate of oxygen evolution are increased in the mutant. Quantitative proteomic analysis revealed that several proteins in glycolysis and the oxidative pentose phosphate pathway are down-regulated, whereas proteins in photosystem II and phycobilisome are significantly up-regulated, in the mutant. Among the down-regulated proteins are glucose transporter, glucokinase, glucose-6-phosphate isomerase, and glucose-6-phosphate dehydrogenase and its assembly protein OpcA, suggesting that glycolysis, oxidative pentose phosphate, and glycogen synthesis pathways are significantly inhibited in the mutant, which was further confirmed by enzymatic assays and quantification of glycogen content. These findings establish Slr0110 as a novel central regulator of carbon metabolism in Synechocystis, and shed light on an intricate mechanism whereby photosynthesis and carbon metabolism are well concerted to survive the crisis when one or more pathways of the system are impaired.


Assuntos
Metabolismo dos Carboidratos/genética , Fotossíntese/genética , Proteômica , Synechocystis/metabolismo , Monóxido de Carbono/metabolismo , Glucose/metabolismo , Glicólise , Fases de Leitura Aberta/genética , Synechocystis/genética , Synechocystis/crescimento & desenvolvimento
8.
J Integr Plant Biol ; 56(12): 1136-50, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25146729

RESUMO

Cyanobacteria are ancient photosynthetic prokaryotes that have adapted successfully to adverse environments including high-light irradiation. Although it is known that the repair of photodamaged photosystem II (PSII) in the organisms is a highly regulated process, our knowledge of the molecular components that regulate each step of the process is limited. We have previously identified a hypothetical protein Slr0151 in the membrane fractions of cyanobacterium Synechocystis sp. PCC 6803. Here, we report that Slr0151 is involved in PSII repair of the organism. We generated a mutant strain (Δslr0151) lacking the protein Slr0151 and analyzed its characteristics under normal and high-light conditions. Targeted deletion of slr0151 resulted in decreased PSII activity in Synechocystis. Moreover, the mutant exhibited increased photoinhibition due to impairment of PSII repair under high-light condition. Further analysis using in vivo radioactive labeling and 2-D blue native/sodium dodecylsulfate polyacrylamide gel electrophoresis indicated that the PSII repair cycle was hindered at the levels of D1 synthesis and disassembly and/or assembly of PSII in the mutant. Protein interaction assays demonstrated that Slr0151 interacts with D1 and CP43 proteins. Taken together, these results indicate that Slr0151 plays an important role in regulating PSII repair in the organism under high-light stress condition.


Assuntos
Luz , Complexo de Proteína do Fotossistema II/genética , Synechocystis/genética , Synechocystis/metabolismo , Deleção de Genes , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Synechocystis/efeitos da radiação
9.
RSC Adv ; 14(5): 2896-2904, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239443

RESUMO

Normally, various minerals exist in quartz as inclusions. In this study, methods such as gem microscopy, polarizing microscopy, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and electron probe microanalysis (EPMA) were used to systematically study the gemological characteristics and inclusions in green rutilated quartz from Inner Mongolia. Results show that the sample appears green due to the chaotic distribution of green inclusions in the shape of hair filaments. Combined with the chemical composition, the inclusions are Ca-Fe-rich amphiboles with compositions very close to those of the end-member ferro-actinolite. According to the principle of amphibole nomenclature, the inclusions are named ferro-actinolite in the subclass of calc-alkaline amphiboles with a few named ferro-hornblende. Results suggested that the inclusions in green rutilated quartz were formed during the late stage of quartz crystallization. This work provides a new theoretical basis for the study of green rutilated quartz in Huanggangliang, Inner Mongolia.

10.
Environ Sci Pollut Res Int ; 31(13): 20234-20245, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38369659

RESUMO

Pyrrhotite, especially the monoclinic type, is a promising material for removing Cr (VI) from wastewater and groundwater due to its high reactivity. However, the purity of the preparation monoclinic pyrrhotite from heated natural pyrite is not high enough, and the role of possible sulfur vacancies in pyrrhotite's crystal structure has been largely ignored in the removal mechanism of Cr (VI). In this work, we characterized the phase composition changes of annealed pyrite in inert gas and prepared high-purity (~ 96%) monoclinic pyrrhotite at the optimal condition. We found that it could remove 18.6 mg/g of Cr (VI) by redox reaction, which is the best value reported of natural pyrite-derived materials so far. As the reactive media material of simulated permeable reactive barrier, the service life of the high-purity monoclinic pyrrhotite column is 297 PV, which is much longer than that of the pyrite column (50 PV). A new founding is that S2- and S vacancy play the essential role during the redox reaction of pyrrhotite and Cr (VI). Monoclinic pyrrhotite had more S vacancy than hexagonal pyrrhotite and pyrite, which explained its superior Cr (VI) removal performance.


Assuntos
Cromo , Poluentes Químicos da Água , Cromo/química , Ferro/química , Sulfetos/química , Águas Residuárias , Poluentes Químicos da Água/análise
11.
Heliyon ; 10(3): e25942, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38371958

RESUMO

Healthy aquatic ecosystems are essential for human beings. However, anthropogenic activities severely worsen water quality. In this study, using assembling mesocosms, we developed an efficient and easy-to-handle method to monitor the water quality by measuring the electrical conductivity (EC) of water. Our data demonstrate that the growth of two submersed macrophytes, Vallisnerianatans and Vallisneria spinulosa, improves water quality by decreasing EC. Furthermore, using high-throughput DNA sequencing, we analyzed the microbial community abundance and structure in sediment and water columns with or without plant growth. We generated 33,775 amplicon sequence variants from 69 samples of four sediment groups (BkM, CtM, VnR, and VsR) and three water column sample groups (CtW, VnW, and VsW). The results show that the relative abundance of bacteria was higher in the sediment than in the water column. Moreover, the diversity and composition of microbiomes were altered by Vallisneria spp. growth, and the α-diversity of the microbial communities decreased due to submersed macrophytes in both the sediment and water columns. The ß-diversity of the microbial communities also varied significantly with or without Vallisneria spp. growth for both the sediment and water columns.

12.
Front Chem ; 11: 1137246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909709

RESUMO

Surface defect engineering is an efficient strategy to enhance the adsorption properties of materials. After calcination in argon, the adsorption capacity of natural magnetite to Pb (II) is significantly improved. The Rietveld refinement, Mössbauer spectrum, and XPS were used to prove the existence of oxygen and cation vacancies in the crystal structure of magnetite after calcination, and it is found that the vacancy content is linearly related to the adsorption amount of Pb (II). This indicates that the increase in the adsorption performance of magnetite after calcination is determined by the vacancy. The adsorption capacity increases from 8 to 26 mg/g when the calcination temperature reaches 700°C. The equilibrium adsorption process of Pb (II) on magnetite can be well fitted to the Langmuir model, and the kinetic adsorption followed a pseudo-second-order mechanism. The improvement of the adsorption performance of magnetite is mainly due to the change in its structure, which depends on the oxidation degree and surface effect of magnetite in the calcination process. This work also provides a theoretical basis for the broad application of magnetite as environmental material.

13.
Sci Total Environ ; 900: 165910, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37524186

RESUMO

The contamination of heavy metal lead has a serious impact on the natural environment and organisms. Among various materials for lead removal, animal bone derived hydroxyapatite has received extensive attention. However, there are different opinions among researchers regarding the mechanism of lead removal by hydroxyapatite, possibly due to varying initial lead concentrations used in different studies and lack of accuracy in the study of lead removal mechanisms. In present work, we synthesized a carbon-containing hydroxyapatite (CHAP) through pyrolysis of bovine bone with excellent lead removal efficiency, and further investigated the lead removal mechanism of CHAP under high and low initial lead concentrations by combining XRD Rietveld refinement, FTIR, XPS, HRTEM etc. methods. The results showed that under low initial Pb2+ concentration condition, the main mechanism of lead removal by CHAP was chemical precipitation (94.1 %), with small contributions of lead complexation with carbon functional groups and cation-π interactions on the amorphous carbon in CHAP, and surface adsorption on the precipitates. Under high initial Pb2+ concentration condition, chemical precipitation remained the main mechanism (74.68 %), but the contributions of the other three mechanisms increased, and ion exchange appeared in the later stage of the removal process. This study provides new insights on the lead immobilization mechanism by CHAP at different initial Pb2+ concentrations in water.

14.
ACS Appl Mater Interfaces ; 15(29): 34698-34703, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37432250

RESUMO

Rechargeable aluminum (Al) batteries have attracted considerable interest as potential large-scale energy storage technologies due to the abundance, high theoretical capacity, and high safety of Al. We report here a highly reversible Al-Mo6Se8 prototype cell with low discharge-charge hysteresis (approximately 50 mV under 30 mA g-1 at 50 °C), ultra-flat discharge plateau, and exceptional cycle stability: the reversible capacity retaining at a steady 77 mA h g-1 after more than 1800 cycles. The Al intercalation-extraction mechanism is probed with ex situ and operando XRD techniques, revealing the reversible intercalation reaction from Mo6Se8 to Al4/3Mo6Se8. The stable electrochemical performance and unambiguous intercalation mechanism of the Al-Mo6Se8 system provide an alternative for beyond-lithium battery technologies.

15.
Nanomaterials (Basel) ; 13(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37110997

RESUMO

Two-dimensional nanomaterials hold great promise as electrode materials for the construction of excellent electrochemical energy storage and transformation apparatuses. In the study, metallic layered cobalt sulfide was, firstly, applied to the area of energy storage as a supercapacitor electrode. By a facile and scalable method for cathodic electrochemical exfoliation, metallic layered cobalt sulfide bulk can be exfoliated into high-quality and few-layered nanosheets with size distributions in the micrometer scale range and thickness in the order of several nanometers. With a two-dimensional thin sheet structure of metallic cobalt sulfide nanosheets, not only was a larger active surface area created, but also, the insertion/extraction of ions in the procedure of charge and discharge were enhanced. The exfoliated cobalt sulfide was applied as a supercapacitor electrode with obvious improvement compared with the original sample, and the specific capacitance increased from 307 F∙g-1 to 450 F∙g-1 at the current density of 1 A∙g-1. The capacitance retention rate of exfoliated cobalt sulfide enlarged to 84.7% from the original 81.9% of unexfoliated samples while the current density multiplied by 5 times. Moreover, a button-type asymmetric supercapacitor assembled using exfoliated cobalt sulfide as the positive electrode exhibits a maximum specific energy of 9.4 Wh∙kg-1 at the specific power of 1520 W∙kg-1.

16.
Small Methods ; 7(9): e2300548, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37291741

RESUMO

Semisolid flow batteries are expected to be applied to large-scale energy storage fields due to the combination of the high energy density of rechargeable batteries and the flexible design of flow batteries. However, electronic conductivity, specific capacity, and viscosity of slurry electrodes are generally mutually restrictive. Here, a new concept of semisolid flow batteries based on magnetic modification slurry electrode is proposed and the electrochemical performance of the semisolid electrode is expected to be improved by close contact and enhanced electronic conductivity between the active particles with the aid of external magnetic field. This concept is further demonstrated using superparamagnetic LiMn2 O4 -Fe3 O4 -carbon nanotube composite as semisolid cathode. It achieves a capacity of 113.7 mAh g-1 at a current density of 0.5 mA cm-2 with the aid of external magnetic field (about 0.4 T), which is about 21% higher than that without external magnetic field. Simulation study also reveals this improvement mainly resulted from the increase of the conductive paths of electrons after the rearrangement of the active particles under the external magnetic field. It is believed that this strategy gives a new and effective method for controlling the viscosity and electronic conductivity of the slurry electrodes and related flowable electrochemical energy storage systems.

17.
ACS Appl Mater Interfaces ; 15(9): 11906-11913, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36843285

RESUMO

We synthesize and characterize a rechargeable aluminum battery cathode material composed of heterostructured Co3Se4/ZnSe embedded in a hollow carbon matrix. This heterostructure is synthesized from a metal-organic framework composite, in which ZIF-8 is grown on the surface of ZIF-67 cube. Both experimental and theoretical studies indicate that the internal electric field across the heterostructure interface between Co3Se4 and ZnSe promotes the fast transport of electron and Al-ion diffusion. As a result, the heterostructured Co3Se4/ZnSe demonstrates superior specific capacity and cycle stability compared to the single-phase Co3Se4 and ZnSe cathode materials.

18.
Opt Express ; 20 Suppl 5: A722-8, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23037539

RESUMO

LaOBr:Nd(3+)/Yb(3+) has been prepared via a high temperature solid-state method, and near-infrared (NIR) quantum cutting (QC) luminescence in this system has been demonstrated. NIR luminescence of LaOBr:Nd(3+)/Yb(3+) has been investigated by excitation, emission spectra and lifetime measurements, respectively. After absorption of a single 363 nm photon, down-conversion (DC) occurs from the Nd(3+) 4G(9/2) level via the cross-relaxation process Nd(3+) (4G(9/2)→4F(3/2)), Yb(3+) (2F(7/2)→2F(5/2)), followed by a second energy transfer step from Nd(3+) (4F(3/2)level) to Yb(3+) (2F(5/2)level), leading to the emission of two IR photons from Yb(3+), which is a promising avenue to boost the efficiency of solar cells with a twofold increase in the photon number.

19.
Inorg Chem ; 51(13): 7202-9, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22686374

RESUMO

A novel red-emitting Ba(2)Tb(BO(3))(2)Cl:Eu phosphor possessing a broad excitation band in the near-ultraviolet (n-UV) region was synthesized by the solid-state reaction. Versatile Ba(2)Tb(BO(3))(2)Cl compound has a rigid open framework, which can offer two types of sites for various valence's cations to occupy, and the coexistence of Eu(2+)/Eu(3+) and the red-emitting luminescence from Eu(3+) with the aid of efficient energy transfer of Eu(2+)-Eu(3+)(Tb(3+)) and Tb(3+)-Eu(3+) have been investigated. Ba(2)Tb(BO(3))(2)Cl emits green emission with the main peak around 543 nm, which originates from (5)D(4) → (7)F(5) transition of Tb(3+). Ba(2)Tb(BO(3))(2)Cl:Eu shows bright red emission from Eu(3+) with peaks around 594, 612, and 624 nm under n-UV excitation (350-420 nm). The existence of Eu(2+) can be testified by the broad-band excitation spectrum, UV-vis reflectance spectrum, X-ray photoelectron spectrum, and Eu L(3)-edge X-ray absorption spectrum. Decay time and time-resolved luminescence measurements indicated that the interesting luminescence behavior should be ascribed to efficient energy transfer of Eu(2+)-Eu(3+)(Tb(3+)) and Tb(3+)-Eu(3+) in Ba(2)Tb(BO(3))(2)Cl:Eu phosphors.


Assuntos
Bário/química , Európio/química , Luz , Térbio/química , Transferência de Energia , Luminescência , Modelos Moleculares
20.
Water Environ Res ; 84(8): 682-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22953453

RESUMO

Contaminants in water are classified into different types based on their physical and chemical properties. Thus, more than one type of sorbents may be needed for their removal. In this article, a combination of vermiculite with palygorskite was studied for their simultaneous removal of ammonium and humic acid from simulated groundwater. Batch results showed that the Langmuir model described ammonium adsorption well with an adsorption capacity of 22 mg/g while the humic acid adsorption data fitted to the linear adsorption better, suggesting different removal mechanisms of these two types of contaminants. Kinetic studies showed an instantaneous removal of ammonium and humic acid. A column packed with mixture of equal volumes of vermiculite and palygorskite could treat 100 pore volumes for ammonium removal at an initial concentration of 10 mg/L and 500 pore volumes for humic acid removal at an initial concentration of 20 mg/L before the effluent concentrations exceeded the standard.


Assuntos
Silicatos de Alumínio/química , Água Subterrânea/química , Substâncias Húmicas/análise , Compostos de Magnésio/química , Compostos de Amônio Quaternário/química , Compostos de Silício/química , Adsorção , Concentração de Íons de Hidrogênio , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA