Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 734
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(6): 107395, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38768812

RESUMO

B2 haplotype major histocompatibility complex (MHC) has been extensively reported to confer resistance to various avian diseases. But its peptide-binding motif is unknown, and the presenting peptide is rarely identified. Here, we identified its peptide-binding motif (X-A/V/I/L/P/S/G-X-X-X-X-X-X-V/I/L) in vitro using Random Peptide Library-based MHC I LC-MS/MS analysis. To further clarify the structure basis of motif, we determined the crystal structure of the BF2∗02:01-PB2552-560 complex at 1.9 Å resolution. We found that BF2∗02:01 had a relatively wide antigen-binding groove, and the structural characterization of pockets was consistent with the characterization of peptide-binding motif. The wider features of the peptide-binding motif and increased number of peptides bound by BF2∗02:01 than BF2∗04:01 might resolve the puzzles for the presence of potential H9N2 resistance in B2 chickens. Afterward, we explored the H9N2 avian influenza virus (AIV)-induced cellular immune response in B2 haplotype chickens in vivo. We found that ratio of CD8+ T cell and kinetic expression of cytotoxicity genes including Granzyme K, interferon-γ, NK lysin, and poly-(ADP-ribose) polymerase in peripheral blood mononuclear cells were significantly increased in defending against H9N2 AIV infection. Especially, we selected 425 epitopes as candidate epitopes based on the peptide-binding motif and further identified four CD8+ T-cell epitopes on H9N2 AIV including NS198-106, PB2552-560, NP182-190, and NP455-463 via ELI-spot interferon-γ detections after stimulating memory lymphocytes with peptides. More importantly, these epitopes were found to be conserved in H7N9 AIV and H9N2 AIV. These findings provide direction for developing effective T cell epitope vaccines using well-conserved internal viral antigens in chickens.

2.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38243850

RESUMO

Local adaptation is critical in speciation and evolution, yet comprehensive studies on proximate and ultimate causes of local adaptation are generally scarce. Here, we integrated field ecological experiments, genome sequencing, and genetic verification to demonstrate both driving forces and molecular mechanisms governing local adaptation of body coloration in a lizard from the Qinghai-Tibet Plateau. We found dark lizards from the cold meadow population had lower spectrum reflectance but higher melanin contents than light counterparts from the warm dune population. Additionally, the colorations of both dark and light lizards facilitated the camouflage and thermoregulation in their respective microhabitat simultaneously. More importantly, by genome resequencing analysis, we detected a novel mutation in Tyrp1 that underpinned this color adaptation. The allele frequencies at the site of SNP 459# in the gene of Tyrp1 are 22.22% G/C and 77.78% C/C in dark lizards and 100% G/G in light lizards. Model-predicted structure and catalytic activity showed that this mutation increased structure flexibility and catalytic activity in enzyme TYRP1, and thereby facilitated the generation of eumelanin in dark lizards. The function of the mutation in Tyrp1 was further verified by more melanin contents and darker coloration detected in the zebrafish injected with the genotype of Tyrp1 from dark lizards. Therefore, our study demonstrates that a novel mutation of a major melanin-generating gene underpins skin color variation co-selected by camouflage and thermoregulation in a lizard. The resulting strong selection may reinforce adaptive genetic divergence and enable the persistence of adjacent populations with distinct body coloration.


Assuntos
Lagartos , Melaninas , Animais , Melaninas/genética , Lagartos/genética , Peixe-Zebra , Regulação da Temperatura Corporal/genética , Pigmentação da Pele/genética , Cor
3.
PLoS Pathog ; 19(10): e1011685, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37819993

RESUMO

Chicken lung is an important target organ of avian influenza virus (AIV) infection, and different pathogenic virus strains lead to opposite prognosis. Using a single-cell RNA sequencing (scRNA-seq) assay, we systematically and sequentially analyzed the transcriptome of 16 cell types (19 clusters) in the lung tissue of chickens infected with H5N1 highly pathogenic avian influenza virus (HPAIV) and H9N2 low pathogenic avian influenza virus (LPAIV), respectively. Notably, we developed a valuable catalog of marker genes for these cell types. Compared to H9N2 AIV infection, H5N1 AIV infection induced extensive virus replication and the immune reaction across most cell types simultaneously. More importantly, we propose that infiltrating inflammatory macrophages (clusters 0, 1, and 14) with massive viral replication, pro-inflammatory cytokines (IFN-ß, IL1ß, IL6 and IL8), and emerging interaction of various cell populations through CCL4, CCL19 and CXCL13, potentially contributed to the H5N1 AIV driven inflammatory lung injury. Our data revealed complex but distinct immune response landscapes in the lung tissue of chickens after H5N1 and H9N2 AIV infection, and deciphered the potential mechanisms underlying AIV-driven inflammatory reactions in chicken. Furthermore, this article provides a rich database for the molecular basis of different cell-type responses to AIV infection.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Lesão Pulmonar , Animais , Galinhas/metabolismo , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H9N2/genética , Análise de Célula Única
4.
Nucleic Acids Res ; 51(7): 3150-3165, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36869674

RESUMO

DNA double-strand breaks (DSBs) are functionally linked to genomic instability in spermatocytes and to male infertility. The heavy metal cadmium (Cd) is known to induce DNA damage in spermatocytes by unknown mechanisms. Here, we showed that Cd ions impaired the canonical non-homologous end-joining (NHEJ) repair pathway, but not the homologous recombination (HR) repair pathway, through stimulation of Ser2056 and Thr2609 phosphorylation of DNA-PKcs at DSB sites. Hyper-phosphorylation of DNA-PKcs led to its premature dissociation from DNA ends and the Ku complex, preventing recruitment of processing enzymes and further ligation of DNA ends. Specifically, this cascade was initiated by the loss of PP5 phosphatase activity, which results from the dissociation of PP5 from its activating ions (Mn), that is antagonized by Cd ions through a competitive mechanism. In accordance, in a mouse model Cd-induced genomic instability and consequential male reproductive dysfunction were effectively reversed by a high dosage of Mn ions. Together, our findings corroborate a protein phosphorylation-mediated genomic instability pathway in spermatocytes that is triggered by exchange of heavy metal ions.


Assuntos
Cádmio , Instabilidade Genômica , Infertilidade Masculina , Espermatócitos , Animais , Humanos , Masculino , Camundongos , Cádmio/toxicidade , DNA/metabolismo , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Instabilidade Genômica/efeitos dos fármacos , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Íons/metabolismo , Fosforilação , Reparo de DNA por Recombinação , Espermatócitos/efeitos dos fármacos
5.
Proc Natl Acad Sci U S A ; 119(30): e2123065119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858407

RESUMO

SARS-CoV-2, the causative agent of the COVID-19 pandemic, undergoes continuous evolution, highlighting an urgent need for development of novel antiviral therapies. Here we show a quantitative mass spectrometry-based succinylproteomics analysis of SARS-CoV-2 infection in Caco-2 cells, revealing dramatic reshape of succinylation on host and viral proteins. SARS-CoV-2 infection promotes succinylation of several key enzymes in the TCA, leading to inhibition of cellular metabolic pathways. We demonstrated that host protein succinylation is regulated by viral nonstructural protein (NSP14) through interaction with sirtuin 5 (SIRT5); overexpressed SIRT5 can effectively inhibit virus replication. We found succinylation inhibitors possess significant antiviral effects. We also found that SARS-CoV-2 nucleocapsid and membrane proteins underwent succinylation modification, which was conserved in SARS-CoV-2 and its variants. Collectively, our results uncover a regulatory mechanism of host protein posttranslational modification and cellular pathways mediated by SARS-CoV-2, which may become antiviral drug targets against COVID-19.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Interações Hospedeiro-Patógeno , Terapia de Alvo Molecular , Processamento de Proteína Pós-Traducional , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/metabolismo , COVID-19/virologia , Células CACO-2 , Exorribonucleases/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Sirtuínas/metabolismo , Succinatos/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
6.
Emerg Infect Dis ; 30(6): 1218-1222, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640498

RESUMO

We characterized the evolution and molecular characteristics of avian influenza A(H7N9) viruses isolated in China during 2021-2023. We systematically analyzed the 10-year evolution of the hemagglutinin gene to determine the evolutionary branch. Our results showed recent antigenic drift, providing crucial clues for updating the H7N9 vaccine and disease prevention and control.


Assuntos
Antígenos Virais , Evolução Molecular , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Influenza Humana , Filogenia , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/imunologia , China/epidemiologia , Animais , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Influenza Humana/epidemiologia , Influenza Humana/virologia , Influenza Humana/imunologia , Antígenos Virais/imunologia , Antígenos Virais/genética , Aves/virologia , Variação Antigênica
7.
J Med Virol ; 96(3): e29491, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38402626

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne hemorrhagic fever disease with high fatality rate of 10%-20%. Vaccines or specific therapeutic measures remain lacking. Human interferon inducible transmembrane protein 3 (hIFITM3) is a broad-spectrum antiviral factor targeting viral entry. However, the antiviral activity of hIFITM3 against SFTS virus (SFTSV) and the functional mechanism of IFITM3 remains unclear. Here we demonstrate that endogenous IFITM3 provides protection against SFTSV infection and participates in the anti-SFTSV effect of type Ⅰ and Ⅲ interferons (IFNs). IFITM3 overexpression exhibits anti-SFTSV function by blocking Gn/Gc-mediated viral entry and fusion. Further studies showed that IFITM3 binds SFTSV Gc directly and its intramembrane domain (IMD) is responsible for this interaction and restriction of SFTSV entry. Mutation of two neighboring cysteines on IMD weakens IFITM3-Gc interaction and attenuates the antiviral activity of IFITM3, suggesting that IFITM3-Gc interaction may partly mediate the inhibition of SFTSV entry. Overall, our data demonstrate for the first time that hIFITM3 plays a critical role in the IFNs-mediated anti-SFTSV response, and uncover a novel mechanism of IFITM3 restriction of SFTSV infection, highlighting the potential of clinical intervention on SFTS disease.


Assuntos
Fatores de Restrição Antivirais , Infecções por Bunyaviridae , Febre Grave com Síndrome de Trombocitopenia , Humanos , Infecções por Bunyaviridae/imunologia , Proteínas de Membrana/imunologia , Phlebovirus , Proteínas de Ligação a RNA/imunologia , Febre Grave com Síndrome de Trombocitopenia/imunologia , Proteínas Virais/metabolismo , Internalização do Vírus , Fatores de Restrição Antivirais/imunologia
8.
Ann Neurol ; 93(1): 164-174, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36214568

RESUMO

OBJECTIVE: The glymphatic system cleans amyloid and tau proteins from the brain in animal studies of Alzheimer disease (AD). However, there is no direct evidence showing this in humans. METHODS: Participants (n = 50, 62.6 ± 5.4 years old, 36 women) with AD and normal controls underwent amyloid positron emission tomography (PET), tau PET, structural T1-weighted magnetic resonance imaging, and neuropsychological evaluation. Whole-brain glymphatic activity was measured by diffusion tensor image analysis along the perivascular space (DTI-ALPS). RESULTS: ALPS-indexes showed negative correlations with deposition of amyloid and tau on PET images and positive correlations with cognitive scores even after adjusting for age, sex, years of education, and APOE4 genotype covariates in multiple AD-related brain regions (all p < 0.05). Mediation analysis showed that ALPS-index acted as a significant mediator between regional standardized uptake value ratios of amyloid and tau images and cognitive dysfunction even after correcting for multiple covariates in AD-related brain regions. These regions are responsible for attention, memory, and executive function, which are vulnerable to sleep deprivation. INTERPRETATION: Glymphatic system activity may act as a significant mediator in AD-related cognitive dysfunction even after adjusting for multiple covariates and gray matter volumes. ALPS-index may provide useful disease progression or treatment biomarkers for patients with AD as an indicator of modulation of glymphatic activity. ANN NEUROL 2023;93:164-174.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Doença de Alzheimer/patologia , Amiloide/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/patologia , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons/métodos , Proteínas tau/metabolismo , Masculino
9.
J Immunol ; 209(5): 979-990, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35940633

RESUMO

Domestic ducks are the important host for H5N1 highly pathogenic avian influenza virus (HPAIV) infection and epidemiology, but little is known about the duck T cell response to H5N1 AIV infection. In infection experiments of mallard ducks, we detected significantly increased CD8+ cells and augmented expression of cytotoxicity-associated genes, including granzyme A and IFN-γ, in PBMCs from 5 to 9 d postinfection when the virus shedding was clearly decreased, which suggested the importance of the duck cytotoxic T cell response in eliminating H5N1 infection in vivo. Intriguingly, we found that a CD8high+ population of PBMCs was clearly upregulated in infected ducks from 7 to 9 d postinfection compared with uninfected ducks. Next, we used Smart-Seq2 technology to investigate the heterogeneity and transcriptional differences of the duck CD8+ cells. Thus, CD8high+ cells were likely to be more responsive to H5N1 AIV infection, based on the high level of expression of genes involved in T cell responses, activation, and proliferation, including MALT1, ITK, LCK, CD3E, CD247, CFLAR, IL-18R1, and IL-18RAP. More importantly, we have also successfully cultured H5N1 AIV-specific duck T cells in vitro, to our knowledge, for the first time, and demonstrated that the CD8high+ population was increased with the duck T cell activation and response in vitro, which was consistent with results in vivo. Thus, the duck CD8high+ cells represent a potentially effective immune response to H5N1 AIV infection in vivo and in vitro. These findings provide novel insights and direction for developing effective H5N1 AIV vaccines.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Animais , Linfócitos T CD8-Positivos/patologia , Patos , Granzimas
10.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34728561

RESUMO

Macromolecular function commonly involves rapidly reversible alterations in three-dimensional structure (conformation). To allow these essential conformational changes, macromolecules must possess higher order structures that are appropriately balanced between rigidity and flexibility. Because of the low stabilization free energies (marginal stabilities) of macromolecule conformations, temperature changes have strong effects on conformation and, thereby, on function. As is well known for proteins, during evolution, temperature-adaptive changes in sequence foster retention of optimal marginal stability at a species' normal physiological temperatures. Here, we extend this type of analysis to messenger RNAs (mRNAs), a class of macromolecules for which the stability-lability balance has not been elucidated. We employ in silico methods to determine secondary structures and estimate changes in free energy of folding (ΔGfold) for 25 orthologous mRNAs that encode the enzyme cytosolic malate dehydrogenase in marine mollusks with adaptation temperatures spanning an almost 60 °C range. The change in free energy that occurs during formation of the ensemble of mRNA secondary structures is significantly correlated with adaptation temperature: ΔGfold values are all negative and their absolute values increase with adaptation temperature. A principal mechanism underlying these adaptations is a significant increase in synonymous guanine + cytosine substitutions with increasing temperature. These findings open up an avenue of exploration in molecular evolution and raise interesting questions about the interaction between temperature-adaptive changes in mRNA sequence and in the proteins they encode.


Assuntos
Evolução Molecular , Moluscos/química , RNA Mensageiro/química , Termotolerância , Animais , Simulação por Computador , Malato Desidrogenase/genética , Estrutura Molecular , Moluscos/fisiologia , RNA Mensageiro/fisiologia
11.
Biol Reprod ; 109(6): 918-937, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37672216

RESUMO

Intrauterine adhesions (IUA) are a common gynecological problem. Stem cell therapy has been widely used in the treatment of IUA. However, due to the complex and harsh microenvironment of the uterine cavity, the effectiveness of such therapy is greatly inhibited. This study aimed to investigate whether melatonin pretreatment enhances the efficacy of human umbilical cord mesenchymal stem cells (HucMSCs) in IUA treatment in rats. First, we explored the effect of melatonin on the biological activity of HucMSCs in vitro through a macrophage co-culture system, Cell Counting Kit 8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU), flow cytometry, immunofluorescence staining, and qRT-PCR. Subsequently, we established the IUA rat model and tracked the distribution of HucMSCs in this model. In addition, we observed the number of M1 and M2 macrophages through immunofluorescence staining and detected the levels of inflammatory cytokines. Four weeks after cell transplantation, HE, Masson, and immunohistochemical staining were performed. In vitro experiments showed that melatonin pretreatment of HucMSCs promoted proliferation, reduced apoptosis, up-regulated the stemness gene, and regulated macrophage polarization. In vivo, melatonin pretreatment caused more HucMSCs to remain in the uterine cavity. Melatonin-pretreated HucMSCs recruited more macrophages, regulated macrophage polarization, and reduced inflammation. Melatonin-pretreated HucMSCs relieved fibrosis, increased endometrium thickness, and up-regulated CD34, vimentin, proliferating cell nuclear antigen (PCNA), and alpha small muscle antigen (α-SMA) expression. Fertility tests showed that melatonin-pretreated HucMSCs increased the number of embryos. In summary, pretreatment with melatonin was beneficial for HucMSC treatment because it enhanced the cell's ability to recruit macrophages and regulate macrophage polarization, which led to the regeneration of the endometrium and improved pregnancy outcomes.


Assuntos
Melatonina , Células-Tronco Mesenquimais , Doenças Uterinas , Gravidez , Feminino , Ratos , Humanos , Animais , Melatonina/farmacologia , Melatonina/metabolismo , Endométrio/metabolismo , Doenças Uterinas/terapia , Doenças Uterinas/metabolismo , Fertilidade , Macrófagos , Cordão Umbilical
12.
J Virol ; 96(6): e0189721, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35045269

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) glycoprotein mediates viral entry and membrane fusion. Its cleavage at S1/S2 and S2' sites during the biosynthesis in virus producer cells and viral entry are critical for viral infection and transmission. In contrast, the biological significance of the junction region between both cleavage sites for S protein synthesis and function is less understood. By analyzing the conservation and structure of S protein, we found that intrachain contacts formed by the conserved tyrosine (Y) residue 756 (Y756) with three α-helices contribute to the spike's conformational stability. When Y756 is mutated to an amino acid residue that can provide hydrogen bonds, S protein could be expressed as a cleaved form, but not vice versa. Also, the L753 mutation linked to the Y756 hydrogen bond prevents the S protein from being cleaved. Y756 and L753 mutations alter S protein subcellular localization. Importantly, Y756 and L753 mutations are demonstrated to reduce the infectivity of the SARS-CoV-2 pseudoviruses by interfering with the incorporation of S protein into pseudovirus particles and causing the pseudoviruses to lose their sensitivity to neutralizing antibodies. Furthermore, both mutations affect the assembly and production of SARS-CoV-2 virus-like particles in cell culture. Together, our findings reveal for the first time a critical role for the conserved L753-LQ-Y756 motif between S1/S2 and S2' cleavage sites in S protein synthesis and processing as well as virus assembly and infection. IMPORTANCE The continuous emergence of SARS-CoV-2 variants such as the delta or lambda lineage caused the continuation of the COVID-19 epidemic and challenged the effectiveness of the existing vaccines. Logically, the spike (S) protein mutation has attracted much concern. However, the key amino acids in S protein for its structure and function are still not very clear. In this study, we discovered for the first time that the conserved residues Y756 and L753 at the junction between the S1/S2 and S2' sites are very important, like the S2' cleavage site R815, for the synthesis and processing of S protein such as protease cleavage, and that the mutations severely interfered with the incorporation of S protein into pseudotyped virus particles and SARS-CoV-2 virus-like particles. Consequently, we delineate the novel potential target for the design of broad-spectrum antiviral drugs in the future, especially in the emergence of SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vírion , Motivos de Aminoácidos/genética , COVID-19/virologia , Humanos , Mutação , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Vírion/metabolismo , Internalização do Vírus
13.
Opt Express ; 31(24): 39424-39432, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38041264

RESUMO

The non-Hermitian skin effect (NHSE) on the non-Hermitian Haldane model with gain and loss on the honeycomb lattice with the outline of a triangle is discussed. The NHSE only occurs on the edge of the lattice, transforming the edge modes into the higher-order corner modes. The NHSE can also occur on a lattice with only loss, which can be treated as a lattice with gain and loss as well as a global loss added to it. When the saturated gain is added to the three corner sites of the dissipative lattice, a single-mode laser system is obtained. When any one site is stimulated initially, the system will reach a saturated state depending on the distribution of the corner modes, and the stable laser light is emitted by sites at the corners.

14.
Opt Express ; 31(3): 3427-3440, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36785336

RESUMO

A nonlinear non-Hermitian topological laser system based on the higher-order corner states of the 2-dimensional (2D) Su-Schrieffer-Heeger (SSH) model is investigated. The topological property of this nonlinear non-Hermitian system described by the quench dynamics is in accordance with that of a normal 2D SSH model. In the topological phase, all sites belonging to the topological corner states begin to emit stable laser light when a pulse is given to any one site of the lattice, while no laser light is emitted when the lattice is in the trivial phase. Furthermore, the next-nearest-neighbor (NNN) couplings are introduced into the strong-coupling unit cells of the 2D SSH model, which open a band gap in the continuous band structure. In the topological phase, similar to the case of 2D SSH model without NNN couplings, the corner sites can emit stable laser light due to the robustness of the higher-order corner states when the NNN couplings are regarded as the perturbation. However, amplitude of the stimulated site does not decay to zero in the trivial phase, because the existence of the NNN couplings in the strong-coupling unit cells make the lattice like one in the tetramer limit, and a weaker laser light is emitted by each corner.

15.
Opt Express ; 31(11): 17580-17592, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381488

RESUMO

In this paper, we propose a high-temperature resistant bilayer structure for electromagnetic protection with low reflection, consisting of a metasurface and an absorbing layer. The bottom metasurface decreases the reflected energy by using a phase cancellation mechanism to make electromagnetic wave scattering in the 8-12 GHz range. While the upper absorbing layer assimilates the incident electromagnetic energy through electrical losses and simultaneously regulates the reflection amplitude and phase of the metasurface to enhance scattering and expand its operating bandwidth. Research shows that the bilayer structure achieves a low reflection of -10 dB in the range of 6.7-11.4 GHz due to the combined effect of the above two physical mechanisms. In addition, long-term high-temperature and thermal cycling tests verified the stability of the structure in the temperature range of 25-300°C. This strategy provides the feasibility of electromagnetic protection in high-temperature conditions.

16.
Opt Express ; 31(10): 15342-15354, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157638

RESUMO

We explore the influence of the artificial atomic chain on the input-output relation of the cavity. Specifically, we extend the atom chain to the one-dimensional Su-Schrieffer-Heeger (SSH) chain to check the role of atomic topological non-trivial edge state on the transmission characteristics of the cavity. The superconducting circuits can realize the artificial atomic chain. Our results show that the atom chain is not equivalent to atom gas, and the transmission properties of the cavity containing the atom chain are entirely different from that of the cavity containing atom gas. When the atom chain is arranged in the form of topological non-trivial SSH model, the atom chain can be equivalent to the three-level atom, in which the edge state contributes to the second level and is resonant with the cavity, while the high-energy bulk state contributes to form the third level and is greatly detuned with the cavity. Therefore, the transmission spectrum shows no more than three peaks. This allows us to infer the topological phase of the atomic chain and the coupling strength between the atom and the cavity only from the profile of the transmission spectrum. Our work is helping to understand the role of topology in quantum optics.

17.
Reprod Biomed Online ; 46(3): 425-435, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36604215

RESUMO

RESEARCH QUESTION: What are the levels of progranulin (PGRN) expression in primary endometrial stromal cells (ESC) and endometrial tissue in patients with endometriosis (EMS)? What is the role and mechanism of action of PGRN in EMS? DESIGN: Endometrial tissue was collected from 30 patients, 15 with EMS (EMS group) and 15 without EMS (non-EMS group). PGRN expression in endometrial tissue and ESC was analysed by immunohistochemistry, immunofluorescence, western blotting and quantitative reverse transcription polymerase chain reaction. PGRN overexpression and silencing ESC were established with lentivirus to detect the effect on proliferation, invasion and migration. The relationship between PGRN and the phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) signalling pathway was verified by western blotting. A rescue assay was performed with PI3K inhibitor treatment. RESULTS: The PGRN expression was significantly higher in EMS samples. PGRN up-regulation promoted proliferation (P = 0.007), migration (P = 0.002) and invasion (P < 0.001) of eutopic endometrial stromal cells (EUESC). The ratio of p-AKT/AKT was higher in the overexpression PGRN (ovPGRN) group than in the overexpression-NC (ovNC) group (P = 0.004). Silencing PGRN produced the opposite results, and LY2940002 addition reversed the effect of PGRN up-regulation on the proliferation, invasion and migration of EUESC. CONCLUSIONS: PGRN might promote the proliferation, invasion and migration of EUESC via the PI3K/Akt signalling pathway. These preliminary in-vitro findings may present a new perspective and inspire further study of the mechanism of EMS.


Assuntos
Endometriose , Proteínas Proto-Oncogênicas c-akt , Feminino , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Endometriose/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Progranulinas/metabolismo , Progranulinas/farmacologia , Movimento Celular , Proliferação de Células , Células Estromais/metabolismo , Endométrio/metabolismo
18.
J Exp Biol ; 226(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37767692

RESUMO

RNA-based thermal regulation is an important strategy for organisms to cope with temperature changes. Inhabiting the intertidal rocky shore, a key interface of the ocean, atmosphere and terrestrial environments, intertidal species have developed variable thermal adaptation mechanisms; however, adaptions at the RNA level remain largely uninvestigated. To examine the relationship between mRNA structural stability and species distribution, in the present study, the secondary structure of cytosolic malate dehydrogenase (cMDH) mRNA of Echinolittorina malaccana, Echinolittorina radiata and Littorina brevicula was determined using selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE), and the change in folding free energy of formation (ΔGfold) was calculated. The results showed that ΔGfold increased as the temperature increased. The difference in ΔGfold (ΔΔGfold) between two specific temperatures (25 versus 0°C, 37 versus 0°C and 57 versus 0°C) differed among the three species, and the ΔΔGfold value of E. malaccana was significantly lower than those of E. radiata and L. brevicula. The number of stems of cMDH mRNA of the snails decreased with increasing temperature, and the breakpoint temperature of E. malaccana was the highest among these. The number of loops was also reduced with increasing temperature, while the length of the loop structure increased accordingly. Consequently, these structural changes can potentially affect the translational efficiency of mRNA. These results imply that there were interspecific differences in the thermal stability of RNA secondary structures in intertidal snails, and these differences may be related to snail distribution.


Assuntos
Adaptação Fisiológica , Caramujos , Animais , Temperatura , RNA Mensageiro/genética , Caramujos/genética , Aclimatação
19.
Anim Cogn ; 26(5): 1685-1695, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37477741

RESUMO

Attention can be biased towards previously reward-associated stimuli even when they are task-irrelevant and physically non-salient, although studies of reward-modulated attention have been largely limited to primate (including human and nonhuman) models. Birds have been shown to have the capacity to discriminate reward and spatial cues in a manner similar to primates, but whether reward history involuntarily affects their attention in the same way remains unclear. We adapted a spatial cueing paradigm with differential rewards to investigate how reward modulates the allocation of attention in peafowl (Pavo cristatus). The birds were required to locate and peck a target on a computer screen that was preceded by a high-value or low-value color cue that was uninformative with respect to the location of the upcoming target. All birds exhibited a validity effect (performance enhanced on valid compared to invalid cue), and an interaction effect between value and validity was evident at the group level, being particularly pronounced in the birds with the greatest amount of reward training. The time course of reward learning was conspicuously incremental, phenomenologically slower compared to primates. Our findings suggest a similar influence of reward history on attention across phylogeny despite a significant difference in neuroanatomy.


Assuntos
Sinais (Psicologia) , Aprendizagem , Animais , Humanos , Tempo de Reação , Recompensa , Aves
20.
BMC Neurol ; 23(1): 255, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400755

RESUMO

BACKGROUND: Approximately 10% to 20% of myasthenia gravis (MG) patients have experienced a myasthenic crisis (MC), which contributes to morbidity and mortality. MC triggered by infection is associated with poor outcomes. However, there is a lack of prognostic factors that clinicians can utilize to target interventions for preventing recurrent infection-triggered MC. This study aimed to characterize clinical manifestations, comorbidities, and biochemical profiles associated with recurrent infection-triggered MC in MG patients. METHODS: This retrospective study included 272 MG patients hospitalized with an infection requiring at least 3 days of antibiotics from January 2001 to December 2019. Patients were further stratified into non-recurrent or recurrent infection groups. Clinical features such as gender, age, concomitant diseases, acetylcholine receptor antibodies and biochemical data (including electrolytes and coagulants), muscle strength of pelvic and shoulder girdle, bulbar and respiratory function, management with an endotracheal tube, Foley catheter, or plasmapheresis, duration of hospitalization, and culture pathogens were recorded. RESULTS: The recurrent infection group was significantly older than the non-recurrent group (median age, 58.5 versus 52.0 years). Pneumonia was the most common infection and Klebsiella pneumoniae was the most common pathogen. The presence of concomitant diabetes mellitus, activated partial thromboplastin time prolongation, the duration of hospitalization, and hypomagnesaemia were independently associated with recurrent infection. The presence of deep vein thrombosis, thymic cancer, and electrolyte imbalances i.e., hypokalemia, and hypoalbuminemia were significantly associated with a risk for infection. The influence of endotracheal intubation, anemia, and plasmapheresis during hospitalization were inconsistent. CONCLUSIONS: The independent risk factors for recurrent infections in MG patients identified in this study include the presence of concomitant diabetes mellitus, hypomagnesaemia, activated partial thromboplastin time prolongation, and longer duration of hospitalization, highlighting the need for targeted interventions to prevent recurrent infections in this population. Further research and prospective studies are warranted to validate these findings and refine interventions for optimizing patient care.


Assuntos
Miastenia Gravis , Reinfecção , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Reinfecção/complicações , Miastenia Gravis/complicações , Miastenia Gravis/epidemiologia , Fatores de Risco , Receptores Colinérgicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA