Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.314
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(13): 3542-3558.e16, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34051138

RESUMO

Structural variations (SVs) and gene copy number variations (gCNVs) have contributed to crop evolution, domestication, and improvement. Here, we assembled 31 high-quality genomes of genetically diverse rice accessions. Coupling with two existing assemblies, we developed pan-genome-scale genomic resources including a graph-based genome, providing access to rice genomic variations. Specifically, we discovered 171,072 SVs and 25,549 gCNVs and used an Oryza glaberrima assembly to infer the derived states of SVs in the Oryza sativa population. Our analyses of SV formation mechanisms, impacts on gene expression, and distributions among subpopulations illustrate the utility of these resources for understanding how SVs and gCNVs shaped rice environmental adaptation and domestication. Our graph-based genome enabled genome-wide association study (GWAS)-based identification of phenotype-associated genetic variations undetectable when using only SNPs and a single reference assembly. Our work provides rich population-scale resources paired with easy-to-access tools to facilitate rice breeding as well as plant functional genomics and evolutionary biology research.


Assuntos
Ecótipo , Variação Genética , Genoma de Planta , Oryza/genética , Adaptação Fisiológica/genética , Agricultura , Domesticação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Estrutural do Genoma , Anotação de Sequência Molecular , Fenótipo
2.
Proc Natl Acad Sci U S A ; 120(4): e2209528120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649428

RESUMO

Sepsis is a lethal syndrome manifested by an unregulated, overwhelming inflammation from the host in response to infection. Here, we exploit the use of a synthetic heparan sulfate octadecasaccharide (18-mer) to protect against sepsis. The 18-mer not only inhibits the pro-inflammatory activity of extracellular histone H3 and high mobility group box 1 (HMGB1), but also elicits the anti-inflammatory effect from apolipoprotein A-I (ApoA-I). We demonstrate that the 18-mer protects against sepsis-related injury and improves survival in cecal ligation and puncture mice and reduces inflammation in an endotoxemia mouse model. The 18-mer neutralizes the cytotoxic histone-3 (H3) through direct interaction with the protein. Furthermore, the 18-mer enlists the actions of ApoA-I to dissociate the complex of HMGB1 and lipopolysaccharide, a toxic complex contributing to cell death and tissue damage in sepsis. Our study provides strong evidence that the 18-mer mitigates inflammatory damage in sepsis by targeting numerous mediators, setting it apart from other potential therapies with a single target.


Assuntos
Endotoxemia , Proteína HMGB1 , Sepse , Camundongos , Animais , Proteína HMGB1/metabolismo , Apolipoproteína A-I , Sepse/tratamento farmacológico , Sepse/metabolismo , Lipopolissacarídeos , Heparitina Sulfato , Modelos Animais de Doenças
3.
Am J Pathol ; 194(2): 307-320, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38245252

RESUMO

Sleep deprivation (SD) is a global public health burden, and has a detrimental role in the nervous system. Retina is an important part of the central nervous system; however, whether SD affects retinal structures and functions remains largely unknown. Herein, chronic SD mouse model indicated that loss of sleep for 4 months could result in reductions in the visual functions, but without obvious morphologic changes of the retina. Ultrastructural analysis by transmission electron microscope revealed the deterioration of mitochondria, which was accompanied with the decrease of multiple mitochondrial proteins in the retina. Mechanistically, oxidative stress was provoked by chronic SD, which could be ameliorated after rest, and thus restore retinal homeostasis. Moreover, the supplementation of two antioxidants, α-lipoic acid and N-acetyl-l-cysteine, could reduce retinal reactive oxygen species, repair damaged mitochondria, and, as a result, improve the retinal functions. Overall, this work demonstrated the essential roles of sleep in maintaining the integrity and health of the retina. More importantly, it points towards supplementation of antioxidants as an effective intervention strategy for people experiencing sleep shortages.


Assuntos
Privação do Sono , Ácido Tióctico , Humanos , Camundongos , Animais , Privação do Sono/complicações , Privação do Sono/metabolismo , Estresse Oxidativo/fisiologia , Antioxidantes/farmacologia , Retina/metabolismo , Ácido Tióctico/farmacologia , Ácido Tióctico/metabolismo
4.
Methods ; 231: 215-225, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39396747

RESUMO

The high dimensionality and noise challenges in genomic data make it difficult for traditional clustering methods. Existing multi-kernel clustering methods aim to improve the quality of the affinity matrix by learning a set of base kernels, thereby enhancing clustering performance. However, directly learning from the original base kernels presents challenges in handling errors and redundancies when dealing with high-dimensional data, and there is still a lack of feasible multi-kernel fusion strategies. To address these issues, we propose a Multi-Kernel Clustering method with Tensor fusion on Grassmann manifolds, called MKCTM. Specifically, we maximize the clustering consensus among base kernels by imposing tensor low-rank constraints to eliminate noise and redundancy. Unlike traditional kernel fusion approaches, our method fuses learned base kernels on the Grassmann manifold, resulting in a final consensus matrix for clustering. We integrate tensor learning and fusion processes into a unified optimization model and propose an effective iterative optimization algorithm for solving it. Experimental results on ten datasets, comparing against 12 popular baseline clustering methods, confirm the superiority of our approach. Our code is available at https://github.com/foureverfei/MKCTM.git.


Assuntos
Algoritmos , Genômica , Genômica/métodos , Análise por Conglomerados , Humanos , Software
5.
Exp Cell Res ; : 114293, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39442644

RESUMO

This study investigates the role of ALKBH5-mediated m6A demethylation in T-cell acute lymphoblastic leukemia (T-ALL). T-ALL cell lines (HPB-ALL, MOLT4, Jurkat, CCRF-CEM) and human T cells were analyzed. CCRF-CEM and Jurkat cells were transfected with si-ALKBH5, miR-20a-5p-inhibitor, and pcDNA3.1-DDX5. The expression levels of ALKBH5, miR-20a-5p, and DDX5 in these cells were determined using qRT-PCR and Western blotting. Cell viability, proliferation, colony formation, and apoptosis were assessed using CCK-8, EdU staining, colony formation assay, and flow cytometry. mRNA m6A levels were quantified with an m6A RNA methylation detection reagent, and RNA immunoprecipitation was employed to measure the enrichment of DGCR8 and m6A on the primary transcript pri-miR-20a of miR-20a-5p. Dual-luciferase assay confirmed the binding relationship between miR-20a-5p and DDX5. Results showed that ALKBH5 and DDX5 were upregulated in T-ALL tissues and cells, whereas miR-20a-5p was downregulated. Silencing ALKBH5 inhibited T-ALL cell viability, colony formation, and proliferation, while promoting apoptosis. These effects were reversed by miR-20a-5p inhibition or DDX5 overexpression. ALKBH5 reduced the relative m6A level in T-ALL cells and decreased miR-20a-5p expression by reducing DGCR8 binding to pri-miR-20a-5p. miR-20a-5p suppressed DDX5 transcription. In conclusion, ALKBH5-mediated m6A demethylation decreases DGCR8 binding to pri-miR-20a, thereby repressing miR-20a-5p expression and enhancing DDX5 expression, ultimately inhibiting T-ALL cell apoptosis and promoting proliferation.

6.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517172

RESUMO

The fetal period is a critical stage in brain development, and understanding the characteristics of the fetal brain is crucial. Although some studies have explored aspects of fetal brain functional networks, few have specifically focused on sex differences in brain network characteristics. We adopted the graph theory method to calculate brain network functional connectivity and topology properties (including global and nodal properties), and further compared the differences in these parameters between male and female fetuses. We found that male fetuses showed an increased clustering coefficient and local efficiency than female fetuses, but no significant group differences concerning other graph parameters and the functional connectivity matrix. Our study suggests the existence of sex-related distinctions in the topological properties of the brain network at the fetal stage of development and demonstrates an increase in brain network separation in male fetuses compared with female fetuses.


Assuntos
Imageamento por Ressonância Magnética , Caracteres Sexuais , Masculino , Humanos , Feminino , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Análise por Conglomerados
7.
Am J Physiol Cell Physiol ; 327(5): C1289-C1299, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39374080

RESUMO

Proteasome inhibitors have been applied to anticancer therapy by accumulating toxic misfolded proteins. However, chemical inactivation of proteasome generates aggresome, a Vimentin cage-enclosed subcellular structure quarantining HDAC6-Dynein-transported misfolded proteins before the protein toxicants are degraded by autophagy. Hence, aggresome may attenuate proteasome inhibitor drug-induced cytotoxicity. To solve the problem, it is imperative to characterize how cells assemble aggresome. By examining aggresomes in six cell lines, A549 cells were selectively studied for their bigger cell size and moderate aggresome-forming activity. Aggresome grew in size upon continuous exposure of A549 cells to proteasome inhibitor MG132 and reached a mature size around the 16th to 24th hour of treatment. Mechanistic studies revealed that NF-кB translocated to the nucleus in MG132-treated cells, and chemical activation or knockdown of NF-кB enhanced or prohibited aggresome assembly. Further analyses showed that NF-кB upregulated HDAC6, and HDAC6 maintained the Vimentin cage by interacting with Vimentin p72, a key modification of the intermediate filament contributing to aggresome formation. Remarkably, chemical inactivation of NF-кB synergized MG132-induced cell mortality. All the findings suggest that NF-кB dictates aggresome assembly via upregulating HDAC6, and NF-кB inhibitor may serve as a potential drug potentiating proteasome inhibitor medicine-induced cytotoxicity during the treatment of cancer cells.NEW & NOTEWORTHY The study reveals a new mechanism guiding MG132-triggered aggresome formation. NF-кB is quickly activated upon exposure to MG132, and NF-кB upregulates the misfolded protein recognizing factor HDCA6. In addition to collecting misfolded proteins, HDAC6 also binds Vimentin and maintains the Vimentin cage, which quarantines toxic misfolded proteins and protects cells from being toxified by those protein toxicants. Therapeutically, chemical inactivation of NF-кB synergizes MG132-induced cytotoxicity, providing a new strategy to defeat cancers.


Assuntos
Desacetilase 6 de Histona , Leupeptinas , NF-kappa B , Inibidores de Proteassoma , Regulação para Cima , Vimentina , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/antagonistas & inibidores , Humanos , Vimentina/metabolismo , Vimentina/genética , NF-kappa B/metabolismo , NF-kappa B/genética , Inibidores de Proteassoma/farmacologia , Leupeptinas/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Células A549 , Linhagem Celular Tumoral
8.
J Cell Mol Med ; 28(18): e70112, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39320020

RESUMO

Oral submucous fibrosis (OSF) is a precancerous condition in the oral cavity, which is closely related to the myofibroblast conversion of buccal mucosal fibroblasts (BMFs) after chronic consumption of areca nut. Emerging evidence suggests pyroptosis, a form of programmed cell death that is mediated by inflammasome, is implicated in persistent myofibroblast activation and fibrosis. Besides, numerous studies have demonstrated the effects of non-coding RNAs on pyroptosis and myofibroblast activities. Herein, we aimed to target key long non-coding RNA PVT1 with natural compound, carvacrol, to alleviate pyroptosis and myofibroblast activation in OSF. We first identified PVT1 was downregulated in the carvacrol-treated fBMFs and then demonstrated that myofibroblast features and expression of pyroptosis makers were all reduced in response to carvacrol treatment. Subsequently, we analysed the expression of PVT1 and found that PVT1 was aberrantly upregulated in OSF specimens and positively correlated with several fibrosis markers. After revealing the suppressive effects of carvacrol on myofibroblast characterisitcs and pyroptosis were mediated by repression of PVT1, we then explored the potential mechanisms. Our data showed that PVT1 may serve as a sponge of microRNA(miR)-20a to mitigate the myofibroblast activation and pyroptosis. Altogether, these findings indicated that the anti-fibrosis effects of carvacrol merit consideration and may be due to the attenuation of pyroptosis and myofibroblast activation by targeting the PVT1/miR-20a axis.


Assuntos
Cimenos , MicroRNAs , Miofibroblastos , Fibrose Oral Submucosa , Piroptose , RNA Longo não Codificante , Fibrose Oral Submucosa/patologia , Fibrose Oral Submucosa/genética , Fibrose Oral Submucosa/metabolismo , Fibrose Oral Submucosa/tratamento farmacológico , Piroptose/efeitos dos fármacos , Piroptose/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Cimenos/farmacologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/patologia , Progressão da Doença , Regulação para Baixo/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos
9.
J Am Chem Soc ; 146(28): 19397-19404, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38959221

RESUMO

The magnetoelectric material has attracted multidisciplinary interest in the past decade for its potential to accommodate various functions. Especially, the external electric field can drive the quantum behaviors of such materials via the spin-electric coupling effect, with the advantages of high spatial resolution and low energy cost. In this work, the spin-electric coupling effect of Mn2+-doped ferroelectric organic-inorganic hybrid perovskite [(CH3)3NCH2Cl]CdCl3 with a large piezoelectric effect was investigated. The electric field manipulation efficiency for the allowed transitions was determined by the pulsed electron paramagnetic resonance. The orientation-included Hamiltonian of the spin-electric coupling effect was obtained via simulating the angle-dependent electric field modulated continuous-wave electron paramagnetic resonance. The results demonstrate that the applied electric field affects not only the principal values of the zero-field splitting tensor but also its principal axis directions. This work proposes and exemplifies a route to understand the spin-electric coupling effect originating from the crystal field imposed on a spin ion being modified by the applied electric field, which may guide the rational screening and designing of hybrid perovskite ferroelectrics that satisfy the efficiency requirement of electric field manipulation of spins in quantum information applications.

10.
Neurobiol Dis ; : 106715, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39490684

RESUMO

Hypermetabolism is a prominent characteristic of ALS patients. Aberrant activation of AMPK, an energy sensor regulated by adiponectin, is known to cause TDP-43 mislocalization, an early event in ALS pathogenesis. This study aims to evaluate the association between key energy mediators and clinical severity in ALS patients. We found that plasma adiponectin levels were significantly higher in ALS patients with ALSFRS-R scores below 38 compared to controls (p = 0.047). Additionally, adiponectin concentration was inversely correlated with ALSFRS-R scores (p = 0.021). Immunofluorescence staining of PBMCs revealed negative associations between AMPK activation, TDP-43 mislocalization, and ALSFRS-R scores. We then examined the hypothesis that adiponectin may activate the AMPK-TDP-43 axis in motor neurons. Our results demonstrated that adiponectin treatment of NSC34 cells and HiPSC-MNs induced AMPK activation and TDP-43 mislocalization in an adiponectin receptor-dependent manner. Collectively, these findings suggest that elevated plasma adiponectin may enhance AMPK activation, leading to TDP-43 mislocalization in both PBMCs and motor neurons of ALS patients. This highlights the potential involvement of the adiponectin-AMPK-TDP-43 axis in the dysregulated energy balance observed in ALS.

11.
Int J Cancer ; 155(12): 2253-2264, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39109820

RESUMO

Acute myeloid leukemia (AML) can manifest as de novo AML (dn-AML) or secondary AML (s-AML), with s-AML being associated with inferior survival and distinct genomic characteristics. The underlying reasons for this disparity remain to be elucidated. In this multicenter study, next-generation sequencing (NGS) was employed to investigate the mutational landscape of AML in 721 patients from June 2020 to May 2023.Genetic mutations were observed in 93.34% of the individuals, with complex variations (more than three gene mutations) present in 63.10% of them. TET2, ASXL1, DNMT3A, TP53 and SRSF2 mutations showed a higher prevalence among older individuals, whereas WT1 and KIT mutations were more commonly observed in younger patients. BCOR, BCORL1, ZRSR2, ASXL1 and SRSF2 exhibited higher mutation frequencies in males. Additionally, ASXL1, NRAS, PPMID, SRSF2, TP53 and U2AF1 mutations were more common in patients with s-AML, which PPM1D was more frequently associated with therapy-related AML (t-AML). Advanced age and hyperleukocytosis independently served as adverse prognostic factors for both types of AML; however, s-AML patients demonstrated a greater number of monogenic adverse prognostic factors compared to dn-AML cases (ASXL1, PPM1D, TP53 and U2AF1 in s-AML vs. FLT3, TP53 and U2AF1 in dn-AML). Age and sex-related gene mutations suggest epigenetic changes may be key in AML pathogenesis. The worse prognosis of s-AML compared to dn-AML could be due to the older age of s-AML patients and more poor-prognosis gene mutations. These findings could improve AML diagnosis and treatment by identifying potential therapeutic targets and risk stratification biomarkers.


Assuntos
Leucemia Mieloide Aguda , Mutação , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Masculino , Feminino , Pessoa de Meia-Idade , Prognóstico , Adulto , Idoso , China/epidemiologia , Adulto Jovem , Adolescente , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética
12.
Genome Res ; 31(3): 397-410, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33563719

RESUMO

Topologically associating domains (TADs) were recently identified as fundamental units of three-dimensional eukaryotic genomic organization, although our knowledge of the influence of TADs on genome evolution remains preliminary. To study the molecular evolution of TADs in Drosophila species, we constructed a new reference-grade genome assembly and accompanying high-resolution TAD map for D. pseudoobscura Comparison of D. pseudoobscura and D. melanogaster, which are separated by ∼49 million years of divergence, showed that ∼30%-40% of their genomes retain conserved TADs. Comparative genomic analysis of 17 Drosophila species revealed that chromosomal rearrangement breakpoints are enriched at TAD boundaries but depleted within TADs. Additionally, genes within conserved TADs show lower expression divergence than those located in nonconserved TADs. Furthermore, we found that a substantial proportion of long genes (>50 kbp) in D. melanogaster (42%) and D. pseudoobscura (26%) constitute their own TADs, implying transcript structure may be one of the deterministic factors for TAD formation. By using structural variants (SVs) identified from 14 D. melanogaster strains, its three closest sibling species from the D. simulans species complex, and two obscura clade species, we uncovered evidence of selection acting on SVs at TAD boundaries, but with the nature of selection differing between SV types. Deletions are depleted at TAD boundaries in both divergent and polymorphic SVs, suggesting purifying selection, whereas divergent tandem duplications are enriched at TAD boundaries relative to polymorphism, suggesting they are adaptive. Our findings highlight how important TADs are in shaping the acquisition and retention of structural mutations that fundamentally alter genome organization.


Assuntos
Cromatina/química , Cromatina/genética , Drosophila/classificação , Drosophila/genética , Evolução Molecular , Genoma de Inseto/genética , Animais , Drosophila melanogaster/genética , Feminino , Genômica , Masculino
13.
Genome Res ; 31(3): 380-396, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33563718

RESUMO

The rapid evolution of repetitive DNA sequences, including satellite DNA, tandem duplications, and transposable elements, underlies phenotypic evolution and contributes to hybrid incompatibilities between species. However, repetitive genomic regions are fragmented and misassembled in most contemporary genome assemblies. We generated highly contiguous de novo reference genomes for the Drosophila simulans species complex (D. simulans, D. mauritiana, and D. sechellia), which speciated ∼250,000 yr ago. Our assemblies are comparable in contiguity and accuracy to the current D. melanogaster genome, allowing us to directly compare repetitive sequences between these four species. We find that at least 15% of the D. simulans complex species genomes fail to align uniquely to D. melanogaster owing to structural divergence-twice the number of single-nucleotide substitutions. We also find rapid turnover of satellite DNA and extensive structural divergence in heterochromatic regions, whereas the euchromatic gene content is mostly conserved. Despite the overall preservation of gene synteny, euchromatin in each species has been shaped by clade- and species-specific inversions, transposable elements, expansions and contractions of satellite and tRNA tandem arrays, and gene duplications. We also find rapid divergence among Y-linked genes, including copy number variation and recent gene duplications from autosomes. Our assemblies provide a valuable resource for studying genome evolution and its consequences for phenotypic evolution in these genetic model species.


Assuntos
Drosophila simulans/classificação , Drosophila simulans/genética , Evolução Molecular , Genoma de Inseto/genética , Animais , Variações do Número de Cópias de DNA/genética , Elementos de DNA Transponíveis/genética , DNA Satélite/genética , Drosophila melanogaster/genética , Feminino , Masculino
14.
Plant Biotechnol J ; 22(9): 2461-2471, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38735054

RESUMO

The reduction in crop yield caused by pathogens and pests presents a significant challenge to global food security. Genetic engineering, which aims to bolster plant defence mechanisms, emerges as a cost-effective solution for disease control. However, this approach often incurs a growth penalty, known as the growth-defence trade-off. The precise molecular mechanisms governing this phenomenon are still not completely understood, but they generally fall under two main hypotheses: a "passive" redistribution of metabolic resources, or an "active" regulatory choice to optimize plant fitness. Despite the knowledge gaps, considerable practical endeavours are in the process of disentangling growth from defence. The plant microbiome, encompassing both above- and below-ground components, plays a pivotal role in fostering plant growth and resilience to stresses. There is increasing evidence which indicates that plants maintain intimate associations with diverse, specifically selected microbial communities. Meta-analyses have unveiled well-coordinated, two-way communications between plant shoots and roots, showcasing the capacity of plants to actively manage their microbiota for balancing growth with immunity, especially in response to pathogen incursions. This review centers on successes in making use of specific root-associated microbes to mitigate the growth-defence trade-off, emphasizing pivotal advancements in unravelling the mechanisms behind plant growth and defence. These findings illuminate promising avenues for future research and practical applications.


Assuntos
Microbiota , Desenvolvimento Vegetal , Imunidade Vegetal , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/imunologia , Plantas/microbiologia , Plantas/imunologia , Plantas/metabolismo , Produtos Agrícolas/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/imunologia , Produtos Agrícolas/genética
15.
BMC Microbiol ; 24(1): 139, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658841

RESUMO

BACKGROUND: Gastric cancer is one of the global health concerns. A series of studies on the stomach have confirmed the role of the microbiome in shaping gastrointestinal diseases. Delineation of microbiome signatures to distinguish chronic gastritis from gastric cancer will provide a non-invasive preventative and treatment strategy. In this study, we performed whole metagenome shotgun sequencing of fecal samples to enhance the detection of rare bacterial species and increase genome sequence coverage. Additionally, we employed multiple bioinformatics approaches to investigate the potential targets of the microbiome as an indicator of differentiating gastric cancer from chronic gastritis. RESULTS: A total of 65 patients were enrolled, comprising 33 individuals with chronic gastritis and 32 with gastric cancer. Within each group, the chronic gastritis group was sub-grouped into intestinal metaplasia (n = 15) and non-intestinal metaplasia (n = 18); the gastric cancer group, early stage (stages 1 and 2, n = 13) and late stage (stages 3 and 4, n = 19) cancer. No significant differences in alpha and beta diversities were detected among the patient groups. However, in a two-group univariate comparison, higher Fusobacteria abundance was identified in phylum; Fusobacteria presented higher abundance in gastric cancer (LDA scored 4.27, q = 0.041 in LEfSe). Age and sex-adjusted MaAsLin and Random Forest variable of importance (VIMP) analysis in species provided meaningful features; Bacteria_caccae was the most contributing species toward gastric cancer and late-stage cancer (beta:2.43, se:0.891, p:0.008, VIMP score:2.543). In contrast, Bifidobacterium_longum significantly contributed to chronic gastritis (beta:-1.8, se:0.699, p:0.009, VIMP score:1.988). Age, sex, and BMI-adjusted MasAsLin on metabolic pathway analysis showed that GLCMANNANAUT-PWY degradation was higher in gastric cancer and one of the contributing species was Fusobacterium_varium. CONCLUSION: Microbiomes belonging to the pathogenic phylum Fusobacteria and species Bacteroides_caccae and Streptococcus_anginosus can be significant targets for monitoring the progression of gastric cancer. Whereas Bifidobacterium_longum and Lachnospiraceae_bacterium_5_1_63FAA might be protection biomarkers against gastric cancer.


Assuntos
Bactérias , Fezes , Gastrite , Metagenoma , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Gastrite/microbiologia , Fezes/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Idoso , Microbioma Gastrointestinal/genética , Adulto
16.
Exp Dermatol ; 33(1): e15015, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284203

RESUMO

IMP-3 expression is a poor prognostic factor of melanomas and it promotes melanoma cell migration and invasion by a pathway modulating HMGA2 mRNA expression. We tried to identify other putative targets of IMP-3. We identified putative IMP-3-binding RNAs, including AKT1, MAPK3, RB1 and RELA, by RNA immunoprecipitation coupled with next-generation sequencing. IMP-3 overexpression increased AKT and RELA levels in MeWo cells. siRNAs against AKT1 and RELA inhibited MeWo/Full-length IMP-3 cell migration. IMP-3 knockdown of A2058 cells decreased AKT1 and RELA expression and lowered migration ability. Co-transfection of A2058 cells with AKT1- or RELA-expressing plasmids with IMP-3 siRNA restored the inhibitory effects of IMP-3 knockdown on migration. HMGA2 did not influence AKT1 and RELA expression in melanoma cells. Human melanoma samples with high IMP-3 levels also showed high HMGA2, AKT1 and RELA expression. Our results show that IMP-3 enhances melanoma cell migration through the regulation of the AKT1 and RELA axis.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas c-akt , Proteínas de Ligação a RNA , Fator de Transcrição RelA , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Melanoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-39438298

RESUMO

INTRODUCTION: Progressive supranuclear palsy (PSP) is a neurodegenerative disorder with diverse clinical presentations that are linked to tau pathology. Recently, Subtype and Stage Inference (SuStaIn) algorithm, an innovative data-driven method, has been developed to model both the spatial-temporal progression and subtypes of disease. This study explores PSP progression using 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging and the SuStaIn algorithm to identify PSP metabolic progression subtypes and understand disease mechanisms. METHODS: The study included 72 PSP patients and 70 controls, with an additional 24 PSP patients enrolled as a test set, undergoing FDG-PET, dopamine transporter (DAT) PET, and neuropsychological assessments. The SuStaIn algorithm was employed to analyze the FDG-PET data, identifying progression subtypes and sequences. RESULTS: Two PSP subtypes were identified: the cortical subtype with early prefrontal hypometabolism and the brainstem subtype with initial midbrain alterations. The cortical subtype displayed greater cognitive impairment and DAT reduction than the brainstem subtype. The test set demonstrates the robustness and reproducibility of the findings. Pathway analysis indicated that disruptions in dopaminergic cortico-basal ganglia pathways are crucial for elucidating the mechanisms of cognitive and behavioral impairment in PSP, leading to the two metabolic progression subtypes. CONCLUSION: This study identified two spatiotemporal progression subtypes of PSP based on FDG-PET imaging, revealing significant differences in metabolic patterns, striatal dopaminergic uptake, and clinical profiles, particularly cognitive impairments. The findings highlight the crucial role of dopaminergic cortico-basal ganglia pathways in PSP pathophysiology, especially in the cortical subtype, providing insights into PSP heterogeneity and potential avenues for personalized treatments.

18.
Artigo em Inglês | MEDLINE | ID: mdl-39155308

RESUMO

PURPOSE: Lewy body dementia (LBD) is a neurodegenerative disease with high heterogeneity and complex pathogenesis. Our study aimed to use disease progression modeling to uncover spatial-temporal dynamic evolution of LBD in vivo, and to explore differential profiles of clinical features, glucose metabolism, and dopaminergic function among different evolution-related subtypes. METHODS: A total of 123 participants (31 healthy controls and 92 LBD patients) who underwent 18F-FDG PET scans were retrospectively enrolled. 18F-FDG PET-based Subtype and Stage Inference (SuStaIn) model was established to illustrate spatial-temporal evolutionary patterns and categorize relevant subtypes. Then subtypes and stages were further related to clinical features, glucose metabolism, and dopaminergic function of LBD patients. RESULTS: This 18F-FDG PET imaging-based approach illustrated two distinct patterns of neurodegenerative evolution originating from the neocortex and basal ganglia in LBD and defined them as subtype 1 and subtype 2, respectively. There were obvious differences between subtypes. Compared with subtype 1, subtype 2 exhibited a greater proportion of male patients (P = 0.045) and positive symptoms such as visual hallucinations (P = 0.033) and fluctuating cognitions (P = 0.033). Cognitive impairment, metabolic abnormalities, dopaminergic dysfunction and progression were all more severe in subtype 2 (all P < 0.05). In addition, a strong association was observed between SuStaIn subtypes and two clinical phenotypes (Parkinson's disease dementia and dementia with Lewy bodies) (P = 0.005). CONCLUSIONS: Our findings based on 18F-FDG PET and data-driven model illustrated spatial-temporal dynamic evolution of LBD and categorized novel subtypes with different evolutionary patterns, clinical and imaging features in vivo. The evolution-related subtypes are associated with LBD clinical phenotypes, which supports the perspective of existence of distinct entities in LBD spectrum.

19.
Mov Disord ; 39(1): 152-163, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38014483

RESUMO

BACKGROUND: Hereditary spastic paraplegias (HSP) are neurologic disorders characterized by progressive lower-extremity spasticity. Despite the identification of several HSP-related genes, many patients lack a genetic diagnosis. OBJECTIVES: The aims were to confirm the pathogenic role of biallelic COQ4 mutations in HSP and elucidate the clinical, genetic, and functional molecular features of COQ4-associated HSP. METHODS: Whole exome sequences of 310 index patients with HSP of unknown cause from three distinct populations were analyzed to identify potential HSP causal genes. Clinical data obtained from patients harboring candidate causal mutations were examined. Functional characterization of COQ4 variants was performed using bioinformatic tools, single-cell RNA sequencing, biochemical assays in cell lines, primary fibroblasts, induced pluripotent stem cell-derived pyramidal neurons, and zebrafish. RESULTS: Compound heterozygous variants in COQ4, which cosegregated with HSP in pedigrees, were identified in 7 patients from six unrelated families. Patients from four of the six families presented with pure HSP, whereas probands of the other two families exhibited complicated HSP with epilepsy or with cerebellar ataxia. In patient-derived fibroblasts and COQ4 knockout complementation lines, stable expression of these missense variants exerted loss-of-function effects, including mitochondrial reactive oxygen species accumulation, decreased mitochondrial membrane potential, and lower ubiquinone biosynthesis. Whereas differentiated pyramidal neurons expressed high COQ4 levels, coq4 knockdown zebrafish displayed severe motor dysfunction, reflecting motor neuron dysregulation. CONCLUSIONS: Our study confirms that loss-of-function, compound heterozygous, pathogenic COQ4 variants are causal for autosomal recessive pure and complicated HSP. Moreover, reduced COQ4 levels attributable to variants correspond with decreased ubiquinone biosynthesis, impaired mitochondrial function, and higher phenotypic disease severity. © 2023 International Parkinson and Movement Disorder Society.


Assuntos
Paraplegia Espástica Hereditária , Peixe-Zebra , Animais , Humanos , Ubiquinona/genética , Paraplegia Espástica Hereditária/genética , Mutação/genética , Mutação de Sentido Incorreto , Proteínas Mitocondriais/genética
20.
Pediatr Res ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914760

RESUMO

BACKGROUND: Stuttering affects approximately 5% of children; however, its neurological basis remains unclear. Identifying imaging biomarkers could aid in early detection. Accordingly, we investigated resting-state cerebral blood flow (CBF) in children with developmental stuttering. METHODS: Pulsed arterial spin labelling magnetic resonance imaging was utilised to quantify CBF in 35 children with developmental stuttering and 27 healthy controls. We compared normalised CBF between the two groups and evaluated the correlation between abnormal CBF and clinical indicators. RESULTS: Compared with healthy controls, the stuttering group exhibited decreased normalised CBF in the cerebellum lobule VI bilaterally, right cuneus, and left superior occipital gyrus and increased CBF in the right medial superior frontal gyrus, left rectus, and left dorsolateral superior frontal gyrus. Additionally, normalised CBF in the left cerebellum lobule VI and left superior occipital gyrus was positively correlated with stuttering severity. CONCLUSIONS: Children who stutter display decreased normalised CBF primarily in the cerebellum and occipital gyrus, with increased normalised CBF in the frontal gyrus. Additionally, the abnormal CBF in the left cerebellum lobule VI and left superior occipital gyrus was associated with more severe symptoms, suggesting that decreased CBF in these areas may serve as a novel neuroimaging clue for stuttering. IMPACT: Stuttering occurs in 5% of children and often extends into adulthood, which may negatively affect quality of life. Early detection and treatment are essential. We used pulsed arterial spin labelling magnetic resonance imaging to visualise the resting-state cerebral blood flow (CBF) in children who stutter and healthy children. Normalised CBF was decreased in stutterers in the cerebellum and occipital gyrus and increased in the frontal gyrus. Stuttering severity was linked to abnormal normalised CBF in the left cerebellum lobule VI and left superior occipital gyrus, suggesting that CBF may serve as a novel neuroimaging clue for stuttering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA