Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 167(5): 1201-1214.e15, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863241

RESUMO

Chromatin dynamics play an essential role in regulating DNA transaction processes, but it is unclear whether transcription-associated chromatin modifications control the mRNA ribonucleoparticles (mRNPs) pipeline from synthesis to nuclear exit. Here, we identify the yeast ISW1 chromatin remodeling complex as an unanticipated mRNP nuclear export surveillance factor that retains export-incompetent transcripts near their transcription site. This tethering activity of ISW1 requires chromatin binding and is independent of nucleosome sliding activity or changes in RNA polymerase II processivity. Combination of in vivo UV-crosslinking and genome-wide RNA immunoprecipitation assays show that Isw1 and its cofactors interact directly with premature mRNPs. Our results highlight that the concerted action of Isw1 and the nuclear exosome ensures accurate surveillance mechanism that proofreads the efficiency of mRNA biogenesis.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Montagem e Desmontagem da Cromatina , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/metabolismo , Complexos Multiproteicos/metabolismo , RNA Polimerase II/metabolismo
2.
Mol Cell ; 83(10): 1573-1587.e8, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37207624

RESUMO

DNA supercoiling has emerged as a major contributor to gene regulation in bacteria, but how DNA supercoiling impacts transcription dynamics in eukaryotes is unclear. Here, using single-molecule dual-color nascent transcription imaging in budding yeast, we show that transcriptional bursting of divergent and tandem GAL genes is coupled. Temporal coupling of neighboring genes requires rapid release of DNA supercoils by topoisomerases. When DNA supercoils accumulate, transcription of one gene inhibits transcription at its adjacent genes. Transcription inhibition of the GAL genes results from destabilized binding of the transcription factor Gal4. Moreover, wild-type yeast minimizes supercoiling-mediated inhibition by maintaining sufficient levels of topoisomerases. Overall, we discover fundamental differences in transcriptional control by DNA supercoiling between bacteria and yeast and show that rapid supercoiling release in eukaryotes ensures proper gene expression of neighboring genes.


Assuntos
Saccharomyces cerevisiae , Transcrição Gênica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , DNA Topoisomerases Tipo II/genética , DNA , DNA Bacteriano/genética , DNA Super-Helicoidal/genética , DNA Topoisomerases Tipo I/metabolismo
3.
Mol Cell ; 82(16): 2952-2966.e6, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35839782

RESUMO

Cellular homeostasis requires the coordination of several machineries concurrently engaged in the DNA. Wide-spread transcription can interfere with other processes, and transcription-replication conflicts (TRCs) threaten genome stability. The conserved Sen1 helicase not only terminates non-coding transcription but also interacts with the replisome and reportedly resolves genotoxic R-loops. Sen1 prevents genomic instability, but how this relates to its molecular functions remains unclear. We generated high-resolution, genome-wide maps of transcription-dependent conflicts and R-loops using a Sen1 mutant that has lost interaction with the replisome but is termination proficient. We show that, under physiological conditions, Sen1 removes RNA polymerase II at TRCs within genes and the rDNA and at sites of transcription-transcription conflicts, thus qualifying as a "key regulator of conflicts." We demonstrate that genomic stability is affected by Sen1 mutation only when in addition to its role at the replisome, the termination of non-coding transcription or R-loop removal are additionally compromised.


Assuntos
Proteínas de Saccharomyces cerevisiae , DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA/genética , Instabilidade Genômica , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
4.
EMBO J ; 42(23): e113104, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855233

RESUMO

R-loops represent a major source of replication stress, but the mechanism by which these structures impede fork progression remains unclear. To address this question, we monitored fork progression, arrest, and restart in Saccharomyces cerevisiae cells lacking RNase H1 and H2, two enzymes responsible for degrading RNA:DNA hybrids. We found that while RNase H-deficient cells could replicate their chromosomes normally under unchallenged growth conditions, their replication was impaired when exposed to hydroxyurea (HU) or methyl methanesulfonate (MMS). Treated cells exhibited increased levels of RNA:DNA hybrids at stalled forks and were unable to generate RPA-coated single-stranded (ssDNA), an important postreplicative intermediate in resuming replication. Similar impairments in nascent DNA resection and ssDNA formation at HU-arrested forks were observed in human cells lacking RNase H2. However, fork resection was fully restored by addition of triptolide, an inhibitor of transcription that induces RNA polymerase degradation. Taken together, these data indicate that RNA:DNA hybrids not only act as barriers to replication forks, but also interfere with postreplicative fork repair mechanisms if not promptly degraded by RNase H.


Assuntos
Replicação do DNA , RNA , Humanos , RNA/genética , Ribonucleases/genética , DNA/metabolismo , Hidroxiureia/farmacologia , Ribonuclease H/genética , Ribonuclease H/metabolismo
5.
Nat Rev Mol Cell Biol ; 16(3): 190-202, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25650800

RESUMO

Transcription termination occurs when the polymerase is released after a transcription event, thus delimitating transcription units; however, the functional importance of termination extends beyond the mere definition of gene borders. By determining the cellular fate of the generated transcripts, transcription termination pathways shape the transcriptome. Recent reports have underscored the crucial role of these pathways in limiting the extent of pervasive transcription, which has attracted interest in post-initiation events in gene expression control. Transcription termination pathways involved in the production of non-coding RNAs - such as the Nrd1-Nab3-Sen1 (NNS) pathway in yeast and the cap-binding complex (CBC)-ARS2 pathway in humans - are key determinants of transcription quality control. Understanding the mechanisms leading to the timely and efficient dismantling of elongation complexes remains a major unmet challenge, but new insights into the molecular basis of termination at mRNA-coding and non-coding RNA gene targets have been gained in eukaryotes.


Assuntos
Regulação da Expressão Gênica , RNA Polimerase II/genética , Terminação da Transcrição Genética , Transcriptoma , Animais , DNA Helicases/genética , DNA Helicases/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação ao Cap de RNA/genética , Proteínas de Ligação ao Cap de RNA/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
6.
Mol Cell ; 72(6): 955-969.e7, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30576657

RESUMO

The fidelity of transcription initiation is essential for accurate gene expression, but the determinants of start site selection are not fully understood. Rap1 and other general regulatory factors (GRFs) control the expression of many genes in yeast. We show that depletion of these factors induces widespread ectopic transcription initiation within promoters. This generates many novel non-coding RNAs and transcript isoforms with diverse stability, drastically altering the coding potential of the transcriptome. Ectopic transcription initiation strongly correlates with altered nucleosome positioning. We provide evidence that Rap1 can suppress ectopic initiation by a "place-holder" mechanism whereby it physically occludes inappropriate sites for pre-initiation complex formation. These results reveal an essential role for GRFs in the fidelity of transcription initiation and in the suppression of pervasive transcription, profoundly redefining current models for their function. They have important implications for the mechanism of transcription initiation and the control of gene expression.


Assuntos
Regulação Fúngica da Expressão Gênica , RNA Fúngico/biossíntese , RNA Mensageiro/biossíntese , RNA não Traduzido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sítios de Ligação , Montagem e Desmontagem da Cromatina , Nucleossomos/genética , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Fúngico/genética , RNA Mensageiro/genética , RNA não Traduzido/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Fatores de Transcrição/genética , Sítio de Iniciação de Transcrição , Iniciação da Transcrição Genética
7.
J Cell Sci ; 136(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36594557

RESUMO

Transcription termination is the final step of a transcription cycle, which induces the release of the transcript at the termination site and allows the recycling of the polymerase for the next round of transcription. Timely transcription termination is critical for avoiding interferences between neighbouring transcription units as well as conflicts between transcribing RNA polymerases (RNAPs) and other DNA-associated processes, such as replication or DNA repair. Understanding the mechanisms by which the very stable transcription elongation complex is dismantled is essential for appreciating how physiological gene expression is maintained and also how concurrent processes that occur synchronously on the DNA are coordinated. Although the strategies employed by the different classes of eukaryotic RNAPs are traditionally considered to be different, novel findings point to interesting commonalities. In this Cell Science at a Glance and the accompanying poster, we review the current understanding about the mechanisms of transcription termination by the three eukaryotic RNAPs.


Assuntos
Eucariotos , Transcrição Gênica , Eucariotos/genética , Eucariotos/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , DNA
8.
Nucleic Acids Res ; 51(2): 517-535, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35934316

RESUMO

N6-Methyladenosine (m6A), one of the most abundant internal modification of eukaryotic mRNAs, participates in the post-transcriptional control of gene expression through recruitment of specific m6A readers. In Saccharomyces cerevisiae, the m6A methyltransferase Ime4 is expressed only during meiosis and its deletion impairs this process. To elucidate how m6A control gene expression, we investigated the function of the budding yeast m6A reader Pho92. We show that Pho92 is an early meiotic factor that promotes timely meiotic progression. High-throughput RNA sequencing and mapping of Pho92-binding sites following UV-crosslinking reveal that Pho92 is recruited to specific mRNAs in an m6A-dependent manner during the meiotic prophase, preceding their down-regulation. Strikingly, point mutations altering m6A sites in mRNAs targeted by Pho92 are sufficient to delay their down-regulation and, in one case, to slow down meiotic progression. Altogether, our results indicate that Pho92 facilitate the meiotic progression by accelerating the down-regulation of timely-regulated mRNAs during meiotic recombination.


mRNAs molecules carry information contained in genes to direct the formation of proteins. In specific circumstances, the cellular machinery modifies some mRNAs through the formation of m6A residues. To understand the function of these m6A marks, the authors used the yeast Saccharomyces cerevisiae in which their formation only occurs during meiosis that leads to spore formation. Characterization of the Pho92 protein that specifically recognizes m6A residues revealed its importance for meiosis. m6A sites bound by Pho92 were identified and shown to be biologically functional. Unexpectedly, Pho92 was found to regulate an early step of meiosis by controlling DNA recombination. Overall, this study provides important clues on the role of m6A residues in mRNAs.


Assuntos
Proteínas de Ligação a RNA , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Recombinação Homóloga , Meiose , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a RNA/metabolismo , Metilação
9.
EMBO J ; 39(7): e101548, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32107786

RESUMO

Pervasive transcription is a widespread phenomenon leading to the production of a plethora of non-coding RNAs (ncRNAs) without apparent function. Pervasive transcription poses a threat to proper gene expression that needs to be controlled. In yeast, the highly conserved helicase Sen1 restricts pervasive transcription by inducing termination of non-coding transcription. However, the mechanisms underlying the specific function of Sen1 at ncRNAs are poorly understood. Here, we identify a motif in an intrinsically disordered region of Sen1 that mimics the phosphorylated carboxy-terminal domain (CTD) of RNA polymerase II, and structurally characterize its recognition by the CTD-interacting domain of Nrd1, an RNA-binding protein that binds specific sequences in ncRNAs. In addition, we show that Sen1-dependent termination strictly requires CTD recognition by the N-terminal domain of Sen1. We provide evidence that the Sen1-CTD interaction does not promote initial Sen1 recruitment, but rather enhances Sen1 capacity to induce the release of paused RNAPII from the DNA. Our results shed light on the network of protein-protein interactions that control termination of non-coding transcription by Sen1.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , RNA Helicases/química , RNA Helicases/metabolismo , RNA Polimerase II/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , RNA Fúngico/metabolismo , RNA não Traduzido/metabolismo , Saccharomyces cerevisiae/genética , Terminação da Transcrição Genética
10.
Cell ; 135(2): 308-21, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18957205

RESUMO

During transcription, proteins assemble sequentially with nascent RNA to generate a messenger ribonucleoprotein particle (mRNP). The THO complex and its associated Sub2p helicase are functionally implicated in both transcription and mRNP biogenesis but their precise function remains elusive. We show here that THO/Sub2p mutation leads to the accumulation of a stalled intermediate in mRNP biogenesis that contains nuclear pore components and polyadenylation factors in association with chromatin. Microarray analyses of genomic loci that are aberrantly docked to the nuclear pore in mutants allowed the identification of approximately 400 novel validated target genes that require THO /Sub2p for efficient expression. Our data strongly suggests that the THO complex/Sub2p function is required to coordinate events leading to the acquisition of export competence at a step that follows commitment to 3'-processing.


Assuntos
Adenosina Trifosfatases/metabolismo , Poro Nuclear/metabolismo , Processamento de Terminações 3' de RNA , Transporte de RNA , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Adenosina Trifosfatases/genética , Cromatina/metabolismo , Proteínas de Choque Térmico/genética , Mutação , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Nucleossomos/metabolismo , RNA Polimerase II/metabolismo , RNA Fúngico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
11.
Mol Cell ; 60(2): 192-4, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26474063

RESUMO

Two recent papers in Molecular Cell, Fong et al. (2015) and Zhang et al. (2015), reopen the debate between the contribution of the allosteric versus the torpedo model of transcription termination.


Assuntos
Poli A/metabolismo , RNA Mensageiro/química , Terminação da Transcrição Genética , Humanos
12.
EMBO J ; 37(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29351914

RESUMO

Transcription termination delimits transcription units but also plays important roles in limiting pervasive transcription. We have previously shown that transcription termination occurs when elongating RNA polymerase II (RNAPII) collides with the DNA-bound general transcription factor Reb1. We demonstrate here that many different DNA-binding proteins can induce termination by a similar roadblock (RB) mechanism. We generated high-resolution transcription maps by the direct detection of RNAPII upon nuclear depletion of two essential RB factors or when the canonical termination pathways for coding and non-coding RNAs are defective. We show that RB termination occurs genomewide and functions independently of (and redundantly with) the main transcription termination pathways. We provide evidence that transcriptional readthrough at canonical terminators is a significant source of pervasive transcription, which is controlled to a large extent by RB termination. Finally, we demonstrate the occurrence of RB termination around centromeres and tRNA genes, which we suggest shields these regions from RNAPII to preserve their functional integrity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Terminação da Transcrição Genética , Transcrição Gênica , Proteínas de Ligação a DNA/genética , Genoma Fúngico , RNA Polimerase II/genética , RNA Fúngico , Proteínas de Saccharomyces cerevisiae/genética
13.
Mol Cell ; 56(5): 667-80, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25479637

RESUMO

Widely transcribed compact genomes must cope with the major challenge of frequent overlapping or concurrent transcription events. Efficient and timely transcription termination is crucial to control pervasive transcription and prevent transcriptional interference. In yeast, transcription termination of RNA polymerase II (RNAPII) occurs via two possible pathways that both require recognition of termination signals on nascent RNA by specific factors. We describe here an additional mechanism of transcription termination for RNAPII and demonstrate its biological significance. We show that the transcriptional activator Reb1p bound to DNA is a roadblock for RNAPII, which pauses and is ubiquitinated, thus triggering termination. Reb1p-dependent termination generates a class of cryptic transcripts that are degraded in the nucleus by the exosome. We also observed transcriptional interference between neighboring genes in the absence of Reb1p. This work demonstrates the importance of roadblock termination for controlling pervasive transcription and preventing transcription through gene regulatory regions.


Assuntos
Proteínas de Ligação a DNA/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sítios de Ligação , Genoma Fúngico , Modelos Genéticos , Estabilidade de RNA , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ubiquitinação
14.
Mol Cell ; 55(3): 467-81, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25066235

RESUMO

The Nrd1-Nab3-Sen1 (NNS) complex is essential for controlling pervasive transcription and generating sn/snoRNAs in S. cerevisiae. The NNS complex terminates transcription of noncoding RNA genes and promotes exosome-dependent processing/degradation of the released transcripts. The Trf4-Air2-Mtr4 (TRAMP) complex polyadenylates NNS target RNAs and favors their degradation. NNS-dependent termination and degradation are coupled, but the mechanism underlying this coupling remains enigmatic. Here we provide structural and functional evidence demonstrating that the same domain of Nrd1p interacts with RNA polymerase II and Trf4p in a mutually exclusive manner, thus defining two alternative forms of the NNS complex, one involved in termination and the other in degradation. We show that the Nrd1-Trf4 interaction is required for optimal exosome activity in vivo and for the stimulation of polyadenylation of NNS targets by TRAMP in vitro. We propose that transcription termination and RNA degradation are coordinated by switching between two alternative partners of the NNS complex.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , RNA Polimerase II/metabolismo , RNA Fúngico/metabolismo , RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Terminação da Transcrição Genética , Sítios de Ligação , DNA Polimerase Dirigida por DNA/química , Exossomos/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação de Ácido Nucleico , Poliadenilação , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo
15.
EMBO J ; 36(11): 1590-1604, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28408439

RESUMO

The superfamily 1B (SF1B) helicase Sen1 is an essential protein that plays a key role in the termination of non-coding transcription in yeast. Here, we identified the ~90 kDa helicase core of Saccharomyces cerevisiae Sen1 as sufficient for transcription termination in vitro and determined the corresponding structure at 1.8 Å resolution. In addition to the catalytic and auxiliary subdomains characteristic of the SF1B family, Sen1 has a distinct and evolutionarily conserved structural feature that "braces" the helicase core. Comparative structural analyses indicate that the "brace" is essential in shaping a favorable conformation for RNA binding and unwinding. We also show that subdomain 1C (the "prong") is an essential element for 5'-3' unwinding and for Sen1-mediated transcription termination in vitro Finally, yeast Sen1 mutant proteins mimicking the disease forms of the human orthologue, senataxin, show lower capacity of RNA unwinding and impairment of transcription termination in vitro The combined biochemical and structural data thus provide a molecular model for the specificity of Sen1 in transcription termination and more generally for the unwinding mechanism of 5'-3' helicases.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , Regulação Fúngica da Expressão Gênica , Dobramento de RNA , RNA Helicases/química , RNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Terminação da Transcrição Genética , Cristalografia por Raios X , DNA Helicases/genética , Análise Mutacional de DNA , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , RNA Helicases/genética , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
16.
RNA Biol ; 18(9): 1310-1323, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33138675

RESUMO

mRNA homoeostasis is favoured by crosstalk between transcription and degradation machineries. Both the Ccr4-Not and the Xrn1-decaysome complexes have been described to influence transcription. While Ccr4-Not has been shown to directly stimulate transcription elongation, the information available on how Xrn1 influences transcription is scarce and contradictory. In this study we have addressed this issue by mapping RNA polymerase II (RNA pol II) at high resolution, using CRAC and BioGRO-seq techniques in Saccharomyces cerevisiae. We found significant effects of Xrn1 perturbation on RNA pol II profiles across the genome. RNA pol II profiles at 5' exhibited significant alterations that were compatible with decreased elongation rates in the absence of Xrn1. Nucleosome mapping detected altered chromatin configuration in the gene bodies. We also detected accumulation of RNA pol II shortly upstream of polyadenylation sites by CRAC, although not by BioGRO-seq, suggesting higher frequency of backtracking before pre-mRNA cleavage. This phenomenon was particularly linked to genes with poorly positioned nucleosomes at this position. Accumulation of RNA pol II at 3' was also detected in other mRNA decay mutants. According to these and other pieces of evidence, Xrn1 seems to influence transcription elongation at least in two ways: by directly favouring elongation rates and by a more general mechanism that connects mRNA decay to late elongation.


Assuntos
Cromatina/metabolismo , Exorribonucleases/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Elongação da Transcrição Genética , Fatores de Elongação da Transcrição/metabolismo , Cromatina/química , Cromatina/genética , Exorribonucleases/genética , Regulação Fúngica da Expressão Gênica , Nucleossomos/genética , Nucleossomos/metabolismo , RNA Polimerase II/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/genética
17.
Mol Cell ; 52(4): 473-84, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24267449

RESUMO

Eukaryotic genomes are pervasively transcribed. However, it is unclear how many newly found RNAs have functions and how many are byproducts of functional, or spurious, transcription events. Cells control the accumulation of many opportunistic transcripts by limiting their synthesis and by provoking their early transcription termination and decay. In this review, we use S. cerevisiae and mammalian cells as models to discuss the circumstances by which pervasive transcripts are produced and turned over. This ultimately relates to the likelihood, and potential mechanism, of molecular function.


Assuntos
RNA não Traduzido/genética , Transcrição Gênica , Animais , Regulação da Expressão Gênica , Genoma Fúngico , Humanos , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
18.
Mol Cell ; 48(3): 409-21, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23000176

RESUMO

The exosome is a complex involved in the maturation of rRNA and sn-snoRNA, in the degradation of short-lived noncoding RNAs, and in the quality control of RNAs produced in mutants. It contains two catalytic subunits, Rrp6p and Dis3p, whose specific functions are not fully understood. We analyzed the transcriptome of combinations of Rrp6p and Dis3p catalytic mutants by high-resolution tiling arrays. We show that Dis3p and Rrp6p have both overlapping and specific roles in degrading distinct classes of substrates. We found that transcripts derived from more than half of intron-containing genes are degraded before splicing. Surprisingly, we also show that the exosome degrades large amounts of tRNA precursors despite the absence of processing defects. These results underscore the notion that large amounts of RNAs produced in wild-type cells are discarded before entering functional pathways and suggest that kinetic competition with degradation proofreads the efficiency and accuracy of processing.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Northern Blotting , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Perfilação da Expressão Gênica , Íntrons/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Precursores de RNA/genética , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato
19.
Trends Genet ; 32(8): 508-522, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27371117

RESUMO

Transcription initiates pervasively in all organisms, which challenges the notion that the information to be expressed is selected mainly based on mechanisms defining where and when transcription is started. Together with post-transcriptional events, termination of transcription is essential for sorting out the functional RNAs from a plethora of transcriptional products that seemingly have no use in the cell. But terminating transcription is not that easy, given the high robustness of the elongation process. We review here many of the strategies that prokaryotic and eukaryotic cells have adopted to dismantle the elongation complex in a timely and efficient manner. We highlight similarities and diversity, underlying the existence of common principles in a diverse set of functionally convergent solutions.


Assuntos
RNA/genética , Terminação da Transcrição Genética , Transcrição Gênica , Células Eucarióticas , Humanos , Células Procarióticas , RNA/biossíntese , RNA não Traduzido/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA