Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 30(7): e202303489, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37942708

RESUMO

We present a comprehensive account on our efforts behind the recently published synthesis of waixenicin A. Our approach for constructing the dihydropyran ring relied on an Achmatowicz rearrangement. For the assembly of the nine-membered ring, four distinct strategies were investigated. Our initial attempts using radical-based addition/fragmentation reactions targeting the C7-C11 bond proved unsuitable for accessing the 6/9-bicycle. By employing anionic fragmentation conditions at the furfuryl alcohol stage, we successfully reached a 5/9-bicycle. However, subsequent ring-expansion was unsuccessful. Alternative approaches, such as Nozaki-Hiyama-Kishi or Heck reactions to connect the C6-C7 bond, also encountered difficulties, with no nine-membered ring formation observed. Our first breakthrough came from our attempts to install the C5-C6 bond via an intramolecular alkylation. Surprisingly, subsequent functional group modifications proved unexpectedly challenging, necessitating a redesign of our synthetic route. Drawing from all our investigations, we concluded that construction of the C9-C10 bond would enable efficient nine-membered ring alkylation and would facilitate the installation of the desired substitution pattern along the southern periphery. Exploration of this strategy yielded further surprises but ultimately led to the successful synthesis of waixenicin A and 9-deacetoxy-14,15-deepoxyxeniculin. For the latter compound, a bioinspired one-step rearrangement to xeniafauranol A was achieved.

2.
J Am Chem Soc ; 145(21): 11811-11817, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37192136

RESUMO

The first asymmetric total synthesis of the Xenia diterpenoid waixenicin A, a potent and highly selective TRPM7 inhibitor, is reported. The characteristic trans-fused oxabicyclo[7.4.0]tridecane ring system was constructed via a diastereoselective conjugate addition/trapping sequence, followed by an intramolecular alkylation to forge the 9-membered ring. While a ß-keto sulfone motif enabled efficient ring-closure, the subsequent radical desulfonylation suffered from (E)/(Z)-isomerization of the C7/C8-alkene. Conducting the sequence with a trimethylsilylethyl ester allowed for a fluoride-mediated decarboxylation that proceeded without detectable isomerization. The acid-labile enol acetal of the delicate dihydropyran core was introduced at an early stage and temporarily deactivated by a triflate function. The latter was critical for the introduction of the side chain. Diverting from a common late-stage intermediate provided access to waixenicin A and 9-deacetoxy-14,15-deepoxyxeniculin. A high-yielding base-mediated dihydropyran-cyclohexene rearrangement of 9-deacetoxy-14,15-deepoxyxeniculin led to xeniafaraunol A in one step.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA