Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Cell Proteomics ; 14(3): 609-20, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25561502

RESUMO

Cysteine (Cys) oxidation is a crucial post-translational modification (PTM) associated with redox signaling and oxidative stress. As Cys is highly reactive to oxidants it forms a range of post-translational modifications, some that are biologically reversible (e.g. disulfides, Cys sulfenic acid) and others (Cys sulfinic [Cys-SO2H] and sulfonic [Cys-SO3H] acids) that are considered "irreversible." We developed an enrichment method to isolate Cys-SO2H/SO3H-containing peptides from complex tissue lysates that is compatible with tandem mass spectrometry (MS/MS). The acidity of these post-translational modification (pKa Cys-SO3H < 0) creates a unique charge distribution when localized on tryptic peptides at acidic pH that can be utilized for their purification. The method is based on electrostatic repulsion of Cys-SO2H/SO3H-containing peptides from cationic resins (i.e. "negative" selection) followed by "positive" selection using hydrophilic interaction liquid chromatography. Modification of strong cation exchange protocols decreased the complexity of initial flowthrough fractions by allowing for hydrophobic retention of neutral peptides. Coupling of strong cation exchange and hydrophilic interaction liquid chromatography allowed for increased enrichment of Cys-SO2H/SO3H (up to 80%) from other modified peptides. We identified 181 Cys-SO2H/SO3H sites from rat myocardial tissue subjected to physiologically relevant concentrations of H2O2 (<100 µm) or to ischemia/reperfusion (I/R) injury via Langendorff perfusion. I/R significantly increased Cys-SO2H/SO3H-modified peptides from proteins involved in energy utilization and contractility, as well as those involved in oxidative damage and repair.


Assuntos
Cisteína/isolamento & purificação , Miocárdio/metabolismo , Peptídeos/isolamento & purificação , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem/métodos , Animais , Miocárdio/patologia , Peptídeos/química , Proteoma/química , Proteoma/isolamento & purificação , Ratos , Ratos Endogâmicos Lew , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia , Eletricidade Estática , Ácidos Sulfínicos/química , Ácidos Sulfônicos/química
2.
J Proteome Res ; 11(4): 2114-26, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22250753

RESUMO

Diagnosis of acute coronary syndromes is based on protein biomarkers, such as the cardiac troponins (cTnI/cTnT) and creatine kinase (CK-MB) that are released into the circulation. Biomarker discovery is focused on identifying very low abundance tissue-derived analytes from within albumin-rich plasma, in which the wide dynamic range of the native protein complement hinders classical proteomic investigations. We employed an ex vivo rabbit model of myocardial ischemia/reperfusion (I/R) injury using Langendorff buffer perfusion. Nonrecirculating perfusate was collected over a temporal profile of 60 min reperfusion following brief, reversible ischemia (15 min; 15I/60R) for comparison with irreversible I/R (60I/60R). Perfusate proteins were separated using two-dimensional gel electrophoresis (2-DE) and identified by mass spectrometry (MS), revealing 26 tissue-specific proteins released during reperfusion post-15I. Proteins released during irreversible I/R (60I/60R) were profiled using gel-based (2-DE and one-dimensional gel electrophoresis coupled to liquid chromatography and tandem mass spectrometry; geLC-MS) and gel-free (LC-MS/MS) methods. A total of 192 tissue-specific proteins were identified during reperfusion post-60I. Identified proteins included those previously associated with I/R (myoglobin, CK-MB, cTnI, and cTnT), in addition to examples currently under investigation in large cohort studies (heart-type fatty acid binding protein; FABPH). The postischemic release profile of a novel cardiac-specific protein, cysteine and glycine-rich protein 3 (Csrp3; cardiac LIM domain protein) was validated by Western blot analysis. We also identified Csrp3 in serum from 6 of 8 patients postreperfusion following acute myocardial infarction. These studies indicate that animal modeling of biomarker release using ex vivo buffer perfused tissue to limit the presence of obfuscating plasma proteins may identify candidates for further study in humans.


Assuntos
Traumatismo por Reperfusão Miocárdica/metabolismo , Proteoma/análise , Proteômica/métodos , Sequência de Aminoácidos , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Western Blotting , Cromatografia Líquida , Modelos Animais de Doenças , Eletroforese em Gel Bidimensional , Humanos , Proteínas com Domínio LIM/análise , Proteínas com Domínio LIM/sangue , Proteínas com Domínio LIM/metabolismo , Masculino , Dados de Sequência Molecular , Proteínas Musculares/análise , Proteínas Musculares/sangue , Proteínas Musculares/metabolismo , Necrose/metabolismo , Proteoma/metabolismo , Coelhos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , Função Ventricular Esquerda
3.
Antioxid Redox Signal ; 34(1): 11-31, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729339

RESUMO

Aims: Cysteine (Cys) is a major target for redox post-translational modifications (PTMs) that occur in response to changes in the cellular redox environment. We describe multiplexed, peptide-based enrichment and quantitative mass spectrometry (MS) applied to globally profile reversible redox Cys PTM in rat hearts during ischemia/reperfusion (I/R) in the presence or absence of an aminothiol antioxidant, N-2-mercaptopropionylglycine (MPG). Parallel fractionation also allowed identification of irreversibly oxidized Cys peptides (Cys-SO2H/SO3H). Results: We identified 4505 reversibly oxidized Cys peptides of which 1372 were significantly regulated by ischemia and/or I/R. An additional 219 peptides (247 sites) contained Cys-SO2H/Cys-SO3H modifications, and these were predominantly identified from hearts subjected to I/R (n = 168 peptides). Parallel reaction monitoring MS (PRM-MS) enabled relative quantitation of 34 irreversibly oxidized Cys peptides. MPG attenuated a large cluster of I/R-associated reversibly oxidized Cys peptides and irreversible Cys oxidation to less than nonischemic controls (n = 24 and 34 peptides, respectively). PRM-MS showed that Cys sites oxidized during ischemia and/or I/R and "protected" by MPG were largely mitochondrial, and were associated with antioxidant functions (peroxiredoxins 5 and 6) and metabolic processes, including glycolysis. Metabolomics revealed I/R induced changes in glycolytic intermediates that were reversed in the presence of MPG, which were consistent with irreversible PTM of triose phosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), altered GAPDH enzyme activity, and reduced I/R glycolytic payoff as evidenced by adenosine triphosphate and NADH levels. Innovation: Novel enrichment and PRM-MS approaches developed here enabled large-scale relative quantitation of Cys redox sites modified by reversible and irreversible PTM during I/R and antioxidant remediation. Conclusions: Cys sites identified here are targets of reactive oxygen species that can contribute to protein dysfunction and the pathogenesis of I/R.


Assuntos
Antioxidantes/farmacologia , Cisteína/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Oxirredução , Processamento de Proteína Pós-Traducional , Animais , Modelos Animais de Doenças , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Peptídeos/metabolismo , Proteoma , Proteômica/métodos , Ratos , Espécies Reativas de Oxigênio/metabolismo
4.
Biophys Rev ; 10(5): 1241-1256, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30267337

RESUMO

Genetically triggered thoracic aortic aneurysms (TAAs) account for 30% of all TAAs and can result in early morbidity and mortality in affected individuals. Epigenetic factors are now recognised to influence the phenotype of many genetically triggered conditions and have become an area of interest because of the potential for therapeutic manipulation. Major epigenetic modulators include DNA methylation, histone modification and non-coding RNA. This review examines epigenetic modulators that have been significantly associated with genetically triggered TAAs and their potential utility for translation to clinical practice.

5.
Genome Med ; 5(2): 20, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23445784

RESUMO

The more than 300 currently identified post-translational modifications (PTMs) provides great scope for subtle or dramatic alteration of protein structure and function. Furthermore, the rapid and transient nature of many PTMs allows efficient signal transmission in response to internal and environmental stimuli. PTMs are predominantly added by enzymes, and the enzymes responsible (such as kinases) are thus attractive targets for therapeutic interventions. Modifications can be grouped according to their stability or transience (reversible versus irreversible): irreversible types (such as irreversible redox modifications or protein deamidation) are often associated with aging or tissue injury, whereas transient modifications are associated with signal propagation and regulation. This is particularly important in the setting of heart disease, which comprises a diverse range of acute (such as ischemia/reperfusion), chronic (such as heart failure, dilated cardiomyopathy) and genetic (such as hypertrophic cardiomyopathy) disease states, all of which have been associated with protein PTM. Recently the interplay between diverse PTMs has been suggested to also influence cellular function, with cooperation or competition for sites of modification possible. Here we discuss the utility of proteomics for examining PTMs in the context of the molecular mechanisms of heart disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA