Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 213(Pt 23): 4074-83, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21075949

RESUMO

In the face of the physical and physiological challenges of performing breath-hold deep dives, marine vertebrates have evolved different strategies. Although behavioural strategies in marine mammals and seabirds have been investigated in detail, little is known about the deepest-diving reptile - the leatherback turtle (Dermochelys coriacea). Here, we deployed tri-axial accelerometers on female leatherbacks nesting on St Croix, US Virgin Islands, to explore their diving strategy. Our results show a consistent behavioural pattern within dives among individuals, with an initial period of active swimming at relatively steep descent angles (∼-40 deg), with a stroke frequency of 0.32 Hz, followed by a gliding phase. The depth at which the gliding phase began increased with the maximum depth of the dives. In addition, descent body angles and vertical velocities were higher during deeper dives. Leatherbacks might thus regulate their inspired air-volume according to the intended dive depth, similar to hard-shelled turtles and penguins. During the ascent, turtles actively swam with a stroke frequency of 0.30 Hz but with a low vertical velocity (∼0.40 ms(-1)) and a low pitch angle (∼+26 deg). Turtles might avoid succumbing to decompression sickness ('the bends') by ascending slowly to the surface. In addition, we suggest that the low body temperature of this marine ectotherm compared with that of endotherms might help reduce the risk of bubble formation by increasing the solubility of nitrogen in the blood. This physiological advantage, coupled with several behavioural and physical adaptations, might explain the particular ecological niche the leatherback turtle occupies among marine reptiles.


Assuntos
Comportamento Animal/fisiologia , Mergulho/fisiologia , Tartarugas/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Feminino , Movimento/fisiologia , Ilhas Virgens Americanas
2.
PeerJ ; 3: e957, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26082869

RESUMO

Colonial pinnipeds may be subject to substantial consumptive competition because they are large, slow-moving central place foragers. We examined possible mechanisms for reducing this competition by examining the diving behaviour of harbour seals (Phoca vitulina) after equipping 34 seals (11 females, 23 males) foraging from three locations; Rømø, Denmark and Lorenzenplate and Helgoland, Germany, in the Wadden Sea area with time-depth recorders. Analysis of 319,021 dives revealed little between-colony variation but appreciable inter-sex differences, with males diving deeper than females, but for shorter periods. Males also had higher vertical descent rates. This result suggests that males may have higher overall swim speeds, which would increase higher oxygen consumption, and may explain the shorter dive durations compared to females. Intersex variation in swim speed alone is predicted to lead to fundamental differences in the time use of three-dimensional space, which may help reduce consumptive competition in harbour seals and other colonial pinnipeds.

3.
PLoS One ; 6(8): e22311, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21829613

RESUMO

Measuring the metabolic of sea turtles is fundamental to understanding their ecology yet the presently available methods are limited. Accelerometry is a relatively new technique for estimating metabolic rate that has shown promise with a number of species but its utility with air-breathing divers is not yet established. The present study undertakes laboratory experiments to investigate whether rate of oxygen uptake (VO2) at the surface in active sub-adult green turtles Chelonia mydas and hatchling loggerhead turtles Caretta caretta correlates with overall dynamic body acceleration (ODBA), a derivative of acceleration used as a proxy for metabolic rate. Six green turtles (25-44 kg) and two loggerhead turtles (20 g) were instrumented with tri-axial acceleration logging devices and placed singly into a respirometry chamber. The green turtles were able to submerge freely within a 1.5 m deep tank and the loggerhead turtles were tethered in water 16 cm deep so that they swam at the surface. A significant prediction equation for mean VO2 over an hour in a green turtle from measures of ODBA and mean flipper length (R(2) = 0.56) returned a mean estimate error across turtles of 8.0%. The range of temperatures used in the green turtle experiments (22-30 °C) had only a small effect on Vo2. A VO2-ODBA equation for the loggerhead hatchling data was also significant (R(2) = 0.67). Together these data indicate the potential of the accelerometry technique for estimating energy expenditure in sea turtles, which may have important applications in sea turtle diving ecology, and also in conservation such as assessing turtle survival times when trapped underwater in fishing nets.


Assuntos
Metabolismo Energético , Tartarugas/metabolismo , Animais , Oxigênio/metabolismo
4.
Nat Commun ; 2: 352, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21673673

RESUMO

Locomotion is one of the major energetic costs faced by animals and various strategies have evolved to reduce its cost. Birds use interspersed periods of flapping and gliding to reduce the mechanical requirements of level flight while undergoing cyclical changes in flight altitude, known as undulating flight. Here we equipped free-ranging marine vertebrates with accelerometers and demonstrate that gait patterns resembling undulating flight occur in four marine vertebrate species comprising sharks and pinnipeds. Both sharks and pinnipeds display intermittent gliding interspersed with powered locomotion. We suggest, that the convergent use of similar gait patterns by distinct groups of animals points to universal physical and physiological principles that operate beyond taxonomic limits and shape common solutions to increase energetic efficiency. Energetically expensive large-scale migrations performed by many vertebrates provide common selection pressure for efficient locomotion, with potential for the convergence of locomotory strategies by a wide variety of species.


Assuntos
Aceleração , Adaptação Biológica/fisiologia , Evolução Biológica , Voo Animal/fisiologia , Otárias/fisiologia , Focas Verdadeiras/fisiologia , Tubarões/fisiologia , Natação/fisiologia , Animais , Argentina , Marcha/fisiologia , Seleção Genética , Especificidade da Espécie , Telemetria
5.
J Anim Ecol ; 75(5): 1081-90, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16922843

RESUMO

1. Time and energy are key currencies in animal ecology, and judicious management of these is a primary focus for natural selection. At present, however, there are only two main methods for estimation of rate of energy expenditure in the field, heart rate and doubly labelled water, both of which have been used with success; but both also have their limitations. 2. The deployment of data loggers that measure acceleration is emerging as a powerful tool for quantifying the behaviour of free-living animals. Given that animal movement requires the use of energy, the accelerometry technique potentially has application in the quantification of rate of energy expenditure during activity. 3. In the present study, we test the hypothesis that acceleration can serve as a proxy for rate of energy expenditure in free-living animals. We measured rate of energy expenditure as rates of O2 consumption (VO2) and CO2 production (VCO2) in great cormorants (Phalacrocorax carbo) at rest and during pedestrian exercise. VO2 and VCO2 were then related to overall dynamic body acceleration (ODBA) measured with an externally attached three-axis accelerometer. 4. Both VO2 and VCO2 were significantly positively associated with ODBA in great cormorants. This suggests that accelerometric measurements of ODBA can be used to estimate VO2 and VCO2 and, with some additional assumptions regarding metabolic substrate use and the energy equivalence of O2 and CO2, that ODBA can be used to estimate the activity specific rate of energy expenditure of free-living cormorants. 5. To verify that the approach identifies expected trends in from situations with variable power requirements, we measured ODBA in free-living imperial cormorants (Phalacrocorax atriceps) during foraging trips. We compared ODBA during return and outward foraging flights, when birds are expected to be laden and not laden with captured fish, respectively. We also examined changes in ODBA during the descent phase of diving, when power requirements are predicted to decrease with depth due to changes in buoyancy associated with compression of plumage and respiratory air. 6. In free-living imperial cormorants, ODBA, and hence estimated VO2, was higher during the return flight of a foraging bout, and decreased with depth during the descent phase of a dive, supporting the use of accelerometry for the determination of activity-specific rate of energy expenditure.


Assuntos
Aceleração , Aves/metabolismo , Metabolismo Energético/fisiologia , Modelos Biológicos , Movimento/fisiologia , Animais , Dióxido de Carbono/metabolismo , Eletrônica/instrumentação , Feminino , Masculino , Consumo de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA