Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 89(1): 9-15, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38069823

RESUMO

Ground-state destabilization is a promising strategy to modulate rotational barriers in amphidynamic crystals. Density functional theory studies of polar phenylenes installed as rotators in pillared paddle-wheel metal organic frameworks were performed to investigate the effects of ground-state destabilization on their rotational dynamics. We found that as the steric size of phenylene substituents increases, the ground-state destabilization effect is also increased. Specifically, a significant destabilization of the ground-state energy occurred as the size of the substituents increased, with values ranging from 2 to 11.7 kcal/mol. An evaluation of the effects of substituents on dipole-dipole interaction energies and rotational barriers suggests that it should be possible to engineer amphidynamic crystals where the dipole-dipole interaction energy becomes comparable to the rotational barriers. Notably, while pure dipole-dipole interaction energies reached values ranging from 0.6 to 2.4 kcal/mol, the inclusion of electronic and steric effects can alter dipolar orientations to significantly greater values. We propose that careful selection of polar substituents with different sizes may help create temperature-responsive materials with switchable collective polarization.

2.
Phys Chem Chem Phys ; 25(22): 15115-15134, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37252733

RESUMO

Quantum dynamics of the radical pair mechanism is a major driving force in quantum biology, materials science, and spin chemistry. The rich quantum physical underpinnings of the mechanism are determined by a coherent oscillation (quantum beats) between the singlet and triplet spin states and their interactions with the environment, which is challenging to experimentally explore and computationally simulate. In this work, we take advantage of quantum computers to simulate the Hamiltonian evolution and thermal relaxation of two radical pair systems undergoing the quantum beats phenomenon. We study radical pair systems with nontrivial hyperfine coupling interactions, namely, 9,10-octalin+/p-terphenyl-d14 (PTP)- and 2,3-dimethylbutane (DMB)+/p-terphenyl-d14 (PTP)- with one and two groups of magnetically equivalent nuclei, respectively. Thermal relaxation dynamics in these systems are simulated using three methods: Kraus channel representations, noise models on Qiskit Aer and the inherent qubit noise present on the near-term quantum hardware. By leveraging the inherent qubit noise, we are able to simulate the noisy quantum beats in the two radical pair systems better than with any classical approximation or quantum simulator. While classical simulations of paramagnetic relaxation grow errors and uncertainties as a function of time, near-term quantum computers can match the experimental data throughout its time evolution, showcasing their unique suitability and future promise in simulating open quantum systems in chemistry.

3.
J Am Chem Soc ; 143(10): 4043-4054, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33682403

RESUMO

Solid-state photodecarbonylation is an attractive but underutilized methodology to forge hindered C-C bonds in complex molecules. This study discloses the use of this reaction to assemble the vicinal quaternary stereocenter motif present in bis(cyclotryptamine) alkaloids. Our strategy was enabled by experimental and computational investigations of the role of substrate conformation on the success or failure of the solid-state photodecarbonylation reaction. This informed a crystal engineering strategy to optimize the key step of the total synthesis. Ultimately, this endeavor culminated in the successful synthesis of the bis(cyclotryptamine) alkaloid "psychotriadine," which features the elusive piperidinoindoline framework. Psychotriadine, a previously unknown compound, was identified in the extracts of the flower Psychotria colorata, suggesting it is a naturally occurring metabolite.


Assuntos
Alcaloides/síntese química , Alcaloides/química , Carbono/química , Radicais Livres/química , Indóis/química , Luz , Conformação Molecular , Piperidinas/química , Estereoisomerismo
4.
J Am Chem Soc ; 143(20): 7740-7747, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33998231

RESUMO

Molecular spur gear dynamics with high gearing fidelity can be achieved through a careful selection of constituent molecular components that favorably position and maintain the two gears in a meshed configuration. Here, we report the synthesis of a new macrocyclic molecular spur gear with a bibenzimidazole stator combined with a second naphthyl bis-gold-phosphine gold complex stator to place two 3-fold symmetric 9,10-diethynyl triptycene cogs at the optimal distance of 8.1 Å for gearing. Micro electron diffraction (µED) analysis confirmed the formation of the macrocyclic structure and the proper alignment of the triptycene cogs. Gearing dynamics in solution are predicted to be extremely fast and, in fact, were too fast to be observed with variable-temperature 1H NMR using CD2Cl2 as the solvent. A combination of molecular dynamics and metadynamics simulations predict that the barriers for gearing and slippage are ca. 4 kcal mol-1 and ca. 9 kcal mol-1, respectively. This system is characterized by enhanced gearing fidelity compared to the acyclic analog. This is achieved by rigidification of the structure, locking the two triptycenes in the preferred gearing distance and orientation.

5.
J Org Chem ; 85(13): 8695-8701, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32478513

RESUMO

The rotational dynamics of dirhodium supramolecular gears, formed with four 9-triptycene carboxylates cyclically arranged around a dirhodium core with variable axial ligands as originally designed by Shionoya et al., provide an excellent opportunity to evaluate the potential of computational methods and expand our understanding of the factors determining geared dynamics. Rotational dynamic rates in these structures depend on the nature of the axial ligand as shown by simulations over timescales that are not accessible experimentally. Molecular dynamics simulations gave information on the gearing mechanism, and the activation barriers to gearing were calculated using density functional theory. Steric demands imposed by the axial ligand were quantified using buried volume analysis. We found that gearing takes place in all six dirhodium-gear complexes with different axial ligands and that rotational barriers depend on their steric size.

6.
Chemistry ; 25(1): 373-378, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30388317

RESUMO

The photochemical conversion of 1,8a-dihydroazulene-1,1-dicarbonitrile (DHA) to vinylheptafulvene (VHF) is a positive T-type photoswitch that is well understood in solution, but has not been explored in the solid state. Upon excitation with UV light, DHA is converted into VHF in the solid state, with a distinct color change from yellow to deep-red, and retention of crystallinity. The structure of the ring-opened product was assigned to syn-VHF using variable-temperature infrared spectroscopy, and determined by X-ray photodiffraction in a crystal enriched with the product by two-photon excitation. A radical pathway becomes an observable photoreaction channel at low temperatures, and includes a strongly colored, short-lived diradical intermediate.

7.
Chem Sci ; 14(11): 2915-2927, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36937596

RESUMO

The computational description of correlated electronic structure, and particularly of excited states of many-electron systems, is an anticipated application for quantum devices. An important ramification is to determine the dominant molecular fragmentation pathways in photo-dissociation experiments of light-sensitive compounds, like sulfonium-based photo-acid generators used in photolithography. Here we simulate the static and dynamical electronic structure of the H3S+ molecule, taken as a minimal model of a triply-bonded sulfur cation, on a superconducting quantum processor of the IBM Falcon architecture. To this end, we generalize a qubit reduction technique termed entanglement forging or EF [A. Eddins et al., Phys. Rev. X Quantum, 2022, 3, 010309], currently restricted to the evaluation of ground-state energies, to the treatment of molecular properties. While in a conventional quantum simulation a qubit represents a spin-orbital, within EF a qubit represents a spatial orbital, reducing the number of required qubits by half. We combine the generalized EF with quantum subspace expansion [W. Colless et al., Phys. Rev. X, 2018, 8, 011021], a technique used to project the time-independent Schrodinger equation for ground- and excited-states in a subspace. To enable experimental demonstration of this algorithmic workflow, we deploy a sequence of error-mitigation techniques. We compute dipole structure factors and partial atomic charges along ground- and excited-state potential energy curves, revealing the occurrence of homo- and heterolytic fragmentation. This study is an important step towards the computational description of photo-dissociation on near-term quantum devices, as it can be generalized to other photodissociation processes and naturally extended in different ways to achieve more realistic simulations.

8.
Chem Sci ; 11(48): 12994-13007, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34094484

RESUMO

In this review we highlight the recent efforts towards the development of molecular gears with an emphasis on building molecular gears in the solid state and the role that molecular gearing and correlated motions may play in the function of crystalline molecular machines. We discuss current molecular and crystal engineering strategies, challenges associated with engineering correlated motion in crystals, and outline experimental and theoretical tools to explore gearing dynamics while highlighting key advances made to date.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA