Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Behav Genet ; 52(3): 195-204, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35083627

RESUMO

We estimated sibling resemblance in health-related physical fitness (PF) and examined how individual characteristics and shared natural environment accounted for sibling similarities. The sample comprised 656 sibling pairs and 102 triplets (6-15 years of age), from three geographical areas of Peru. PF components included morphological (waist circumference, sum of skinfolds), muscular (handgrip strength, standing long jump), and motor (shuttle-run). Body mass index (BMI) and somatic maturation were also assessed. In general, sibling intraclass correlations differed significantly across sib-ship types for waist circumference and handgrip strength but were the same for sum of skinfolds, standing long jump, and shuttle-run. Further, in general, both individual characteristics and geographical area of residence significantly influenced the magnitude of sibling resemblance as well as the mean levels of PF. In conclusion, individual characteristics and shared natural environment jointly influenced the expression of PF in Peruvian siblings, revealing the importance of these features when designing individualized programs promoting fitness.


Assuntos
Força da Mão , Irmãos , Índice de Massa Corporal , Humanos , Peru , Aptidão Física , Circunferência da Cintura
2.
Mamm Genome ; 29(1-2): 48-62, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29356897

RESUMO

Exercise training which meets the recommendations set by the National Physical Activity Guidelines ensues a multitude of health benefits towards the prevention and treatment of various chronic diseases. However, not all individuals respond well to exercise training. That is, some individuals have no response, while others respond poorly. Genetic background is known to contribute to the inter-individual (human) and -strain (e.g., mice, rats) variation with acute exercise and exercise training, though to date, no specific genetic factors have been identified that explain the differential responses to exercise. In this review, we provide an overview of studies in human and animal models that have shown a significant contribution of genetics in acute exercise and exercise training-induced adaptations with standardized endurance and resistance training regimens, and further describe the genetic approaches which have been used to demonstrate such responses. Finally, our current understanding of the role of genetics and exercise is limited primarily to the nuclear genome, while only a limited focus has been given to a potential role of the mitochondrial genome and its interactions with the nuclear genome to predict the exercise training-induced phenotype(s) responses. We therefore discuss the mitochondrial genome and literature that suggests it may play a significant role, particularly through interactions with the nuclear genome, in the inherent ability to respond to exercise.


Assuntos
Adaptação Fisiológica/genética , Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Resistência Física/genética , Animais , Humanos , Fenótipo , Condicionamento Físico Animal , Ratos , Treinamento Resistido
3.
J Strength Cond Res ; 29(3): 567-77, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25268285

RESUMO

Stock car racing is the largest spectator sport in the United States. As a result, National Association for Stock Car Automobile Racing (NASCAR) Sprint Cup teams have begun to invest in strength and conditioning programs for their pit crew athletes. However, there is limited knowledge regarding the physical characteristics of elite NASCAR pit crew athletes, how the NASCAR Sprint Cup season affects basic physiological parameters such as body composition, and what is the most appropriate physical training program that meets the needs of a pit crew athlete. We conducted 3 experiments involving Sprint Cup motorsport athletes to determine predictors of success at the elite level, seasonal physiological changes, and appropriate physical training programs. Our results showed that hamstring flexibility (p = 0.015) and the score on the 2-tire front run test (p = 0.012) were significant predictors of NASCAR Sprint Cup Pit Crew athlete performance. Additionally, during the off season, pit crew athletes lost lean body mass, which did not return until the middle of the season. Therefore, a strength and conditioning program was developed to optimize pit crew athlete performance throughout the season. Implementation of this strength and conditioning program in 1 NASCAR Sprint Cup team demonstrated that pit crew athletes were able to prevent lean body mass loss and have increased muscle power output from the start of the season to the end of the season.


Assuntos
Ocupações , Condicionamento Físico Humano/fisiologia , Adulto , Automóveis , Composição Corporal/fisiologia , Teste de Esforço , Humanos , Masculino , Força Muscular/fisiologia , Treinamento Resistido , Estados Unidos , Adulto Jovem
4.
Twin Res Hum Genet ; 17(4): 262-71, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25034445

RESUMO

Studies on the determinants of physical activity have traditionally focused on social factors and environmental barriers, but recent research has shown the additional importance of biological factors, including genetic variation. Here we review the major tenets of this research to arrive at three major conclusions: First, individual differences in physical activity traits are significantly influenced by genetic factors, but genetic contribution varies strongly over age, with heritability of leisure time exercise behavior ranging from 27% to 84% and heritability of sedentary behaviors ranging from 9% to 48%. Second, candidate gene approaches based on animal or human QTLs or on biological relevance (e.g., dopaminergic or cannabinoid activity in the brain, or exercise performance influencing muscle physiology) have not yet yielded the necessary evidence to specify the genetic mechanisms underlying the heritability of physical activity traits. Third, there is significant genetic modulation of the beneficial effects of daily physical activity patterns on strength and endurance improvements and on health-related parameters like body mass index. Further increases in our understanding of the genetic determinants of sedentary and exercise behaviors as well as the genetic modulation of their effects on fitness and health will be key to meaningful future intervention on these behaviors.


Assuntos
Exercício Físico , Resistência Física/genética , Comportamento Sedentário , Fatores Etários , Animais , Encéfalo/fisiologia , Canabinoides/metabolismo , Genótipo , Comportamentos Relacionados com a Saúde , Humanos , Estudos em Gêmeos como Assunto
5.
Med Sci Sports Exerc ; 55(10): 1812-1822, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37202869

RESUMO

PURPOSE: Obesity is thought to negatively impact bone quality and strength despite improving bone mineral density. We hypothesized that 1) continuous consumption of a high-fat, high-sugar (HFS) diet would impair bone quality and strength, and 2) a change from an HFS diet to a low-fat, low-sugar (LFS) would reverse HFS-induced impairments to bone quality and strength. METHODS: Six-week-old male C57Bl/6 mice ( n = 10/group) with access to a running wheel were randomized to an LFS diet or an HFS diet with simulated sugar-sweetened beverages (20% fructose in place of regular drinking water) for 13 wk. HFS mice were subsequently randomized to continuing HFS feeding (HFS/HFS) or transition to the LFS diet (HFS/LFS) for four additional weeks. RESULTS: HFS/HFS mice exhibited superior femoral cancellous microarchitecture (i.e., greater BV/TV, Tb.N, Tb.Th, and decreased Tb.Sp) and cortical bone geometry (i.e., lower Ct.CSA and pMOI) compared with all other groups. At the femoral mid-diaphysis, structural, but not material, mechanical properties were greatest in HFS/HFS mice. However, HFS/HFS exhibited greater femoral neck strength only when compared with mice assigned to diet transition (HFS/LFS). Osteoclast surface and the percentage of osteocytes staining positive for interferon-gamma were greater in HFS/LFS mice, consistent with reduced cancellous microarchitecture postdiet transition. CONCLUSIONS: HFS feeding enhanced bone anabolism and structural, but not material, mechanical properties in exercising mice. A change from an HFS to LFS diet returned the bone structure to that of continuously LFS-fed mice while compromising strength. Our results indicate rapid weight loss from obese states should be performed with caution to prevent bone fragility. A deeper analysis into the altered bone phenotype in diet-induced obesity from a metabolic standpoint is needed.


Assuntos
Densidade Óssea , Frutose , Animais , Masculino , Camundongos , Osso e Ossos/metabolismo , Dieta com Restrição de Gorduras , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-36901221

RESUMO

Physical activity is associated with a host of positive health outcomes and is shaped by both genetic and environmental factors. We aim to: (1) estimate sibling resemblance in two physical activity phenotypes [total number of steps∙day-1 and minutes for moderate steps per day (min∙day-1)]; and (2) investigate the joint associations of individual characteristics and shared natural environment with intra-pair sibling similarities in each phenotype. We sampled 247 biological siblings from 110 nuclear families, aged 6-17 years, from three Peruvian regions. Physical activity was measured using pedometers and body mass index was calculated. In general, non-significant variations in the intraclass correlation coefficients were found after adjustment for individual characteristics and geographical area for both phenotypes. Further, no significant differences were found between the three sib-ship types. Sister-sister pairs tended to take fewer steps than brother-brother (ß = -2908.75 ± 954.31). Older siblings tended to walk fewer steps (ß = -81.26 ± 19.83), whereas body mass index was not associated with physical activity. Siblings living at high-altitude and in the Amazon region had higher steps/day (ß = 2508.92 ± 737.94; ß = 2213.11 ± 776.63, respectively) compared with their peers living at sea-level. In general, we found no influence of sib-types, body mass index, and/or environment on the two physical activity phenotypes.


Assuntos
Aptidão Física , Irmãos , Masculino , Humanos , Peru , Exercício Físico , Índice de Massa Corporal
7.
Front Public Health ; 10: 929331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784244

RESUMO

Background: Stakeholders from multiple sectors are increasingly aware of the critical need for identifying sustainable interventions that promote healthy lifestyle behaviors. Activity-friendly communities (AFCs) have been known to provide opportunities for engaging in physical activity (PA) across the life course, which is a key to healthy living and healthy aging. Purpose: Our purpose is to describe the study protocol developed for a research project that examines: (a) the short- and long-term changes in total levels and spatial and temporal patterns of PA after individuals move from non-AFCs to an AFC; and (b) what built and natural environmental factors lead to changes in PA resulting from such a move, either directly or indirectly (e.g., by affecting psychosocial factors related to PA). Methods: This protocol is for a longitudinal, case-comparison study utilizing a unique natural experiment opportunity in Austin, Texas, USA. Case participants were those adults who moved from non-AFCs to an AFC. Matching comparison participants were residents from similar non-AFCs who did not move during the study period. Recruitment venues included local businesses, social and print media, community events, and individual referrals. Objectively measured moderate-to-vigorous PA and associated spatial and temporal patterns served as the key outcomes of interest. Independent (e.g., physical environments), confounding (e.g., demographic factors), and mediating variables (e.g., psychosocial factors) were captured using a combination of objective (e.g., GIS, GPS, Tanita scale) and subjective measures (e.g., survey, travel diary). Statistical analyses will be conducted using multiple methods, including difference-in-differences models, repeated-measures linear mixed models, hierarchical marked space-time Poisson point pattern analysis, and hierarchical linear mixed models. Conclusion: Natural experiment studies help investigate causal relationships between health and place. However, multiple challenges associated with participant recruitment, extensive and extended data collection activities, and unpredictable intervention schedules have discouraged many researchers from implementing such studies in community-based populations. This detailed study protocol will inform the execution of future studies to explore how AFCs impact population health across the life course.


Assuntos
Exercício Físico , Saúde da População , Adulto , Estudos de Casos e Controles , Humanos , Inquéritos e Questionários , Texas
8.
Med Sci Sports Exerc ; 54(9): 1437-1447, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35969165

RESUMO

PURPOSE: Chronic overfeeding via a high-fat/high-sugar (HFHS) diet decreases wheel running and substantially alters the gut metabolome of C57BL/6J mice. In this study, we tested the hypothesis that fecal microbial transplants can modulate the effect of diet on wheel running. METHODS: Singly housed, 6-wk-old male C57BL/6J mice were fed either a grain-based diet (CHOW) or HFHS diet and provided a running wheel for 13 wk. Low-active, HFHS-exposed mice were then either switched to a CHOW diet and given an oral fecal microbial transplant from mice fed the CHOW diet, switched to a CHOW diet and given a sham transplant, or remained on the HFHS diet and given a fecal microbial transplant from mice fed the CHOW diet. Total wheel running, nutrient intake, body composition, fecal microbial composition, fecal metabolite composition, and liver steatosis were measured at various times throughout the study. RESULTS: We found that an HFHS diet decreases wheel running activity, increases body fat, and decreases microbial alpha diversity compared with a CHOW diet. Improvements in wheel running, body composition, and microbial alpha diversity were accomplished within 2 wk for mice switched from an HFHS diet to a CHOW diet with no clear evidence of an added benefit from fecal transplants. A fecal transplant from mice fed a CHOW diet without altering diet did not improve wheel running or body composition. Wheel running, body composition, fecal microbial composition, fecal metabolite composition, and liver steatosis percentage were primarily determined by diet. CONCLUSIONS: Our results suggest that diet is a primary mediator of wheel running with no clear effect from fecal microbial transplants.


Assuntos
Dieta Hiperlipídica , Fígado Gorduroso , Animais , Transplante de Microbiota Fecal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora
9.
J Nutr ; 141(3): 526-30, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21270357

RESUMO

Although it is well known that physical activity prevents and ameliorates a large number of conditions and chronic diseases, it is also incontrovertible that physical inactivity is becoming more prevalent. This paradox has led some to suggest that genetic/biological factors influence activity levels as opposed to the classical notion that voluntary activity is solely regulated by environmental factors. There is a plethora of recent data showing that there is considerable genetic influence on activity levels in both humans and animals and emerging evidence suggesting potential genomic locations for those genetic factors. Several independent lines of evidence suggest that dopamine receptor 1 (Drd1) and nescient helix loop helix (Nhlh2) are excellent candidate genes for the regulation of physical activity, with several other potential candidate genes only partially supported. This foundation provides the basis for continuing work to identify additional candidate genes, to identify other genetic factors that are involved in the regulation of physical activity, and to investigate the mechanisms by which these genes and genetic factors regulate activity.


Assuntos
Variação Genética , Atividade Motora/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Humanos , Locos de Características Quantitativas , Receptores de Dopamina D1/genética
10.
Genetica ; 139(6): 813-21, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21667081

RESUMO

A number of quantitative trait loci (QTLs) recently have been discovered that affect various activity traits in mice, but their collective impact does not appear to explain the consistently moderate to high heritabilities for these traits. We previously suggested interactions of genes, or epistasis, might account for additional genetic variability of activity, and tested this for the average distance, duration and speed run by mice during a 3 week period. We found abundant evidence for epistasis affecting these traits, although, recognized that epistatic effects may well vary within individuals over time. We therefore conducted a full genome scan for epistatic interactions affecting these traits in each of seven three-day intervals. Our intent was to assess the extent and trends in epistasis affecting these traits in each of the intervals. We discovered a number of epistatic interactions of QTLs that influenced the activity traits in the mice, the majority of which were not previously found and appeared to affect the activity traits (especially distance and speed) primarily in the early or in the late age intervals. The overall impact of epistasis was considerable, its contribution to the total phenotypic variance varying from an average of 22-35% in the three traits across all age intervals. It was concluded that epistasis is more important than single-locus effects of genes on activity traits at specific ages and it is therefore an essential component of the genetic architecture of physical activity.


Assuntos
Epistasia Genética , Atividade Motora/genética , Locos de Características Quantitativas/genética , Animais , Feminino , Pleiotropia Genética , Variação Genética , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL
11.
J Strength Cond Res ; 25(8): 2075-83, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21654342

RESUMO

There is limited information regarding the physiological and psychological demands of the racing environment, and the subsequent effect on the performance of pit crew athletes. The purpose of this study was to evaluate heart rates (HRs) and core body temperatures (CTs) of pit crew athletes in the race environment. The HR and CT of pit crew athletes (n = 7) and control subjects were measured during 6 National Association for Stock Car Automobile Racing Sprint Cup races using ingestible sensors (HQ Inc, Palmetto, FL, USA). The HR and CT were measured before each race, at 15-minute intervals during the race, and upon completion of each pit stop. Compared to the control subject at each race, the pit crew athletes had significantly (p = 0.014) lower core temperatures (CTs). The pit crew athletes displayed higher HRs on the asphalt tracks than on concrete tracks (p = 0.011), and HR responses of the crew members were significantly (p = 0.012) different between pit crew positions, with the tire changers and jackman exhibiting higher HRs than the tire carriers. Unexpectedly, the CTs of the pit crew athletes were not elevated in the race environment, despite high ambient temperatures and the extensive fire-protection equipment (e.g., helmet, suit, gloves) each pit crew athlete wore. The lack of CT change is possibly the result of the increased HR more efficiently shunting blood to the skin and dissipating heat as a consequence of the athletes' extensive training regimen and ensuing heat acclimation. Additionally, it is possible that psychological stress unique to several of the tracks provided an additive effect resulting in increased heart rates.


Assuntos
Atletas , Automóveis , Temperatura Corporal/fisiologia , Frequência Cardíaca/fisiologia , Adulto , Regulação da Temperatura Corporal/fisiologia , Temperatura Alta , Humanos , Consumo de Oxigênio/fisiologia , Adulto Jovem
12.
Med Sci Sports Exerc ; 53(5): 883-887, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33844668

RESUMO

It is clear, based on a deep scientific literature base, that genetic and genomic factors play significant roles in determining a wide range of sport and exercise characteristics including exercise endurance capacity, strength, daily physical activity levels, and trainability of both endurance and strength. Although the research field of exercise systems genetics has rapidly expanded over the past two decades, many researchers publishing in this field are not extensively trained in molecular biology or genomics techniques, sometimes creating gaps in generating high-quality and cutting-edge research for publication. As current or former Associate Editors for Medicine and Science in Sports and Exercise that have handled the majority of exercise genetics articles for Medicine and Science in Sports and Exercise in the past 15 yr, we have observed a large number of scientific manuscripts submitted for publication review that have exhibited significant flaws preventing their publication; flaws that often directly stem from a lack of knowledge regarding the "state-of-the-art" methods and accepted literature base that is rapidly changing as the field evolves. The purpose of this commentary is to provide researchers-especially those coming from a nongenetics background attempting to publish in the exercise system genetics area-with recommendations regarding best-practice research standards and data analysis in the field of exercise systems genetics, to strengthen the overall literature in this important and evolving field of research.


Assuntos
Exercício Físico , Fenômenos Fisiológicos/genética , Polimorfismo de Nucleotídeo Único/genética , Editoração/normas , Pesquisa/normas , Desempenho Atlético/fisiologia , Análise de Dados , Estudo de Associação Genômica Ampla/normas , Genótipo , Humanos , Força Muscular/genética , Fenótipo , Condicionamento Físico Humano , Resistência Física/genética , Controle de Qualidade , Reprodutibilidade dos Testes , Projetos de Pesquisa/normas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tamanho da Amostra , Esportes/fisiologia
13.
14.
BMC Genet ; 11: 83, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20858254

RESUMO

BACKGROUND: In recent years it has become increasingly apparent that physical inactivity can predispose individuals to a host of health problems. While many studies have analyzed the effect of various environmental factors on activity, we know much less about the genetic control of physical activity. Some studies in mice have discovered quantitative trait loci (QTL) influencing various physical activity traits, but mostly have analyzed inter-individual variation rather than variation in activity within individuals over time. We conducted a genome scan to identify QTLs controlling the distance, duration, and time run by mice over seven consecutive three-day intervals in an F2 population created by crossing two inbred strains (C57L/J and C3H/HeJ) that differed widely (average of nearly 300%) in their activity levels. Our objectives were (a) to see if we would find QTLs not originally discovered in a previous investigation that assessed these traits over the entire 21-day period and (b) to see if some of these QTLs discovered might affect the activity traits only in the early or in the late time intervals. RESULTS: This analysis uncovered 39 different QTLs, over half of which were new. Some QTLs affected the activity traits only in the early time intervals and typically exhibited significant dominance effects whereas others affected activity only in the later age intervals and exhibited less dominance. We also analyzed the regression slopes of the activity traits over the intervals, and found several QTLs affecting these traits that generally mapped to unique genomic locations. CONCLUSIONS: It was concluded that the genetic architecture of physical activity in mice is much more complicated than has previously been recognized, and may change considerably depending on the age at which various activity measures are assessed.


Assuntos
Variação Genética , Camundongos/genética , Atividade Motora/genética , Locos de Características Quantitativas , Animais , Genótipo , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Polimorfismo de Nucleotídeo Único , Análise de Regressão
15.
Metabolites ; 10(10)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092034

RESUMO

The gut metabolome offers insight for identifying the source of diet related pathology. As such, the purpose of this study was to characterize alterations of the gut metabolome in female and male C57BL/6J mice randomly assigned to a standard "chow" diet (CHOW) or a high fat/high sugar diet (HFHS; 45% fat and 20% fructose drinking solution) for nine weeks. Cecal metabolites were extracted and an untargeted analysis via LC-MS/MS was performed. Partial Least Sums Discriminate Analysis (PLS-DA) presented significant differences between the two diet groups in a sex-dependent manner. Mann-Whitney U-tests revealed 2443 and 1669 features to be significantly different between diet groups in the females and males, respectively. The majority of altered metabolites were depleted within the cecum of the HFHS fed mice. Metabolic pathways associated with galactose metabolism, leukotriene metabolism, and androgen and estrogen biosynthesis and metabolism were differentially altered with an HFHS diet between sexes. We concluded the immense metabolite depletion and elevation of adverse metabolites associated with the HFHS diet is suggestive of poor gut health. Further, the differential alterations between female and male mice suggests that sex plays an important role in determining the effect of diet on the metabolome and host health.

16.
Med Sci Sports Exerc ; 52(11): 2303-2309, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33064405

RESUMO

PURPOSE: We designed the study to determine whether mitochondrial DNA (mtDNA) haplogroup, sequence, and heteroplasmy differed between individuals previously characterized as low (LR) or high responders (HR) as defined by their maximal oxygen uptake response to a standardized aerobic exercise training program. METHODS: DNA was isolated from whole blood in subjects from the HERITAGE Family Study that were determined to be either HR (n = 15) or LR (n = 15). mtDNA was amplified by long-range polymerase chain reaction, then tagged with Nextera libraries and sequenced on a MiSeq instrument. RESULTS: Different mtDNA haplogroup subtypes were found in HR and LR individuals. Compared with HR subjects, significantly more LR subjects had variants in 13 sites, including 7 in hypervariable (HV) regions: HV2 (G185A: 0 vs 6, P = 0.02; G228A: 0 vs 5, P = 0.04; C295T: 0 vs 6; P = 0.04), HV3 (C462T: 0 vs 5, P = 0.04; T489C: 0 vs 5; P = 0.04), and HV1 (C16068T: 0 vs 6, P = 0.02; T16125C: 0 vs 6, P = 0.02). Remaining variants were in protein coding genes, mtND1 (1 vs 8, P = 0.02), mtND3 (A10397G: 0 vs 5, P = 0.04), mtND4 (A11250G: 1 vs 8, P = 0.02), mtND5 (G13707A: 0 vs 5, P = 0.04), and mtCYTB (T14797C: 0 vs 5, P = 0.04; C15451A: 1 vs 8, P = 0.02). Average total numbers of heteroplasmies (P = 0.83) and frequency of heteroplasmies (P = 0.05) were similar between the groups. CONCLUSIONS: Our findings provide specific sites across the mitochondrial genome that may be related to maximal oxygen uptake trainability.


Assuntos
DNA Mitocondrial/genética , Exercício Físico/fisiologia , Genoma Mitocondrial , Consumo de Oxigênio/fisiologia , Adolescente , Adulto , Voluntários Saudáveis , Humanos , Masculino , Adulto Jovem
17.
Physiol Rep ; 8(21): e14605, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33190396

RESUMO

In this pilot work, we selected two inbred strains that respond well to endurance training (ET) (FVB/NJ, and SJL/J strains), and two strains that respond poorly (BALB/cByJ and NZW/LacJ), to determine the effect of a standardized ET treadmill program on mitochondrial and nuclear DNA (nucDNA) integrity, and mitochondrial DNA (mtDNA) copy number. DNA was isolated from plantaris muscles (n = 37) and a gene-specific quantitative PCR-based assay was used to measure DNA lesions and mtDNA copy number. Mean mtDNA lesions were not different within strains in the sedentary or exercise-trained states. However, mtDNA lesions were significantly higher in trained low-responding NZW/LacJ mice (0.24 ± 0.06 mtDNA lesions/10 Kb) compared to high-responding strains (mtDNA lesions/10 Kb: FVB/NJ = 0.11 ± 0.01, p = .049; SJL/J = 0.04 ± 0.02; p = .003). ET did not alter mean mtDNA copy numbers for any strain, although both sedentary and trained FVB/NJ mice had significantly higher mtDNA copies (99,890 ± 4,884 mtDNA copies) compared to low-responding strains (mtDNA copies: BALB/cByJ = 69,744 ± 4,675; NZW/LacJ = 65,687 ± 5,180; p < .001). ET did not change nucDNA lesions for any strain, however, SJL/J had the lowest mean nucDNA lesions (3.5 ± 0.14 nucDNA lesions/6.5 Kb) compared to all other strains (nucDNA lesions/6.5 Kb: FVB/NJ = 4.4 ± 0.11; BALB/cByJ = 4.7 ± 0.09; NZW/LacJ = 4.4 ± 0.11; p < .0001). Our results demonstrate strain differences in plantaris muscle mtDNA lesions in ET mice and, independent of condition, differences in mean mtDNA copy and nucDNA lesions between strains.


Assuntos
Variações do Número de Cópias de DNA , Dano ao DNA , DNA Mitocondrial/genética , Mitocôndrias/genética , Condicionamento Físico Animal , Animais , Treino Aeróbico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Especificidade da Espécie
18.
PLoS One ; 15(11): e0242926, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33253250

RESUMO

With the rise in physical inactivity and its related diseases, it is necessary to understand the mechanisms involved in physical activity regulation. Biological factors regulating physical activity are studied to establish a possible target for improving the physical activity level. However, little is known about the role metabolism plays in physical activity regulation. Therefore, we studied protein fractional synthesis rate (FSR) of multiple organ tissues of 12-week-old male mice that were previously established as inherently low-active (n = 15, C3H/HeJ strain) and high-active (n = 15, C57L/J strain). Total body water of each mouse was enriched to 5% deuterium oxide (D2O) via intraperitoneal injection and maintained with D2O enriched drinking water for about 24 h. Blood samples from the jugular vein and tissues (kidney, heart, lung, muscle, fat, jejunum, ileum, liver, brain, skin, and bone) were collected for enrichment analysis of alanine by LC-MS/MS. Protein FSR was calculated as -ln(1-enrichment). Data are mean±SE as fraction/day (unpaired t-test). Kidney protein FSR in the low-active mice was 7.82% higher than in high-active mice (low-active: 0.1863±0.0018, high-active: 0.1754±0.0028, p = 0.0030). No differences were found in any of the other measured organ tissues. However, all tissues resulted in a generally higher protein FSR in the low-activity mice compared to the high-activity mice (e.g. lung LA: 0.0711±0.0015, HA: 0.0643±0.0020, heart LA: 0.0649± 0.0013 HA: 0.0712±0.0073). Our observations suggest that high-active mice in most organ tissues are no more inherently equipped for metabolic adaptation than low-active mice, but there may be a connection between protein metabolism of kidney tissue and physical activity level. In addition, low-active mice have higher organ-specific baseline protein FSR possibly contributing to the inability to achieve higher physical activity levels.


Assuntos
Músculos/metabolismo , Biossíntese de Proteínas/genética , Proteínas/genética , Comportamento Sedentário , Animais , Cromatografia Líquida , Humanos , Injeções Intraperitoneais , Jejuno/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Especificidade de Órgãos/genética , Condicionamento Físico Animal/métodos , Proteínas/isolamento & purificação , Espectrometria de Massas em Tandem , Distribuição Tecidual/genética
19.
PLoS One ; 15(6): e0235095, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32589680

RESUMO

Our previous studies suggest that physical activity (PA) levels are potentially regulated by endogenous metabolic mechanisms such as the vasodilatory roles of nitric oxide (NO) production via the precursor arginine (ARG) and ARG-related pathways. We assessed ARG metabolism and its precursors [citrulline (CIT), glutamine (GLN), glutamate (GLU), ornithine (ORN), and phenylalanine (PHE)] by measuring plasma concentration, whole-body production (WBP), de novo ARG and NO production, and clearance rates in previously classified low-active (LA) or high-active (HA) mice. We assessed LA (n = 23) and HA (n = 20) male mice by administering a stable isotope tracer pulse via jugular catheterization. We measured plasma enrichments via liquid chromatography tandem mass spectrometry (LC-MS/MS) and body compostion by echo-MRI. WBP, clearance rates, and de novo ARG and NO were calculated. Compared to LA mice, HA mice had lower plasma concentrations of GLU (71.1%; 36.8 ± 2.9 vs. 17.5 ± 1.7µM; p<0.0001), CIT (21%; 57.3 ± 2.3 vs. 46.4 ± 1.5µM; p = 0.0003), and ORN (40.1%; 55.4 ± 7.3 vs. 36.9 ± 2.6µM; p = 0.0241), but no differences for GLN, PHE, and ARG. However, HA mice had higher estimated NO production ratio (0.64 ± 0.08; p = 0.0197), higher WBP for CIT (21.8%, 8.6 ± 0.2 vs. 10.7 ± 0.3 nmol/g-lbm/min; p<0.0001), ARG (21.4%, 35.0 ± 0.6 vs. 43.4 ± 0.7 nmol/g-lbm/min; p<0.0001), PHE (7.6%, 23.8 ± 0.5 vs. 25.6 ± 0.5 nmol/g-lbm/min; p<0.0100), and lower GLU (78.5%; 9.4 ± 1.1 vs. 4.1 ± 1.6 nmol/g lbm/min; p = 0.0161). We observed no significant differences in WBP for GLN, ORN, PHE, or de novo ARG. We concluded that HA mice have an activated whole-body ARG pathway, which may be associated with regulating PA levels via increased NO production.


Assuntos
Arginina/sangue , Atividade Motora , Óxido Nítrico/sangue , Animais , Cromatografia Líquida/métodos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal , Espectrometria de Massas em Tandem/métodos
20.
BMC Genet ; 10: 58, 2009 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-19772584

RESUMO

BACKGROUND: Physical activity is beneficial in reducing the weight gain and associated health problems often experienced by individuals as they age, but the association of weight change with physical activity remains complex. We tested for a possible genetic basis for this association between 9-12-week body weight change (WTC) and the distance, duration, and speed voluntarily run by 307 mice in an F2 population produced from an intercross of two inbred strains (C57L/J and C3H/HeJ) that differed dramatically in their physical activity levels. RESULTS: In this population WTC did show the expected negative association with the physical activity traits, but only the phenotypic correlation of WTC with speed (-0.18) reached statistical significance. Using an interval mapping approach with single-nucleotide polymorphism markers, we discovered five (four suggestive and one significant) quantitative trait loci (QTLs) affecting body weight change, only one of which appeared to show pleiotropic effects on the physical activity traits as well. Genome-wide epistasis scans also detected several pairwise interactions of QTLs with pleiotropic effects on WTC and the physical activity traits, but these effects made a significant contribution (51%) only to the covariance of WTC with speed. CONCLUSION: It was concluded that the genetic contribution to the phenotypic association between WTC and the physical activity traits in this population of mice was primarily epistatic in origin, restricted to one measure of physical activity, and could be quite variable among different populations depending on the genetic background, experimental design and traits assessed.


Assuntos
Peso Corporal/genética , Variação Genética , Condicionamento Físico Animal , Locos de Características Quantitativas , Animais , Mapeamento Cromossômico , Cruzamentos Genéticos , Epistasia Genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Polimorfismo de Nucleotídeo Único , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA