RESUMO
BACKGROUND: Heat shock proteins (HSPs) function as molecular chaperones with critical roles in chicken embryogenesis, immune response to infectious diseases, and response to various environmental stresses. However, little is known on HSP genes in chicken. In this study, to understand the roles of chicken HSPs, we performed genome-wide identification, expression, and functional analyses of the HSP family genes in chicken. RESULTS: A total of 76 HSP genes were identified in the chicken genome, which were further classified into eight distinct groups (I-VIII) based on phylogenetic tree analysis. The gene-structure analysis revealed that the members of each clade had the same or similar exon-intron structures. Chromosome mapping suggested that HSP genes were widely dispersed across the chicken genome, except in chromosomes 16, 18, 22, 25, 26, and 28-32, which lacked chicken HSP genes. On the other hand, the interactions among chicken HSPs were limited, indicating that the remaining functions of HSPs could be investigated in chicken. Moreover, KEGG pathway analysis showed that the HSP gene family was involved in the regulation of heat stress, apoptotic, intracellular signaling, and immune response pathways. Finally, RNA sequencing data revealed that, of the 76 chicken HSP genes, 46 were differentially expressed at 21 different growth stages in chicken embryos, and 72 were differentially expressed on post-infection day 3 in two indigenous Ri chicken lines infected with highly pathogenic avian influenza. CONCLUSIONS: This study provides significant insights into the potential functions of HSPs in chicken, including the regulation of apoptosis, heat stress, chaperone activity, intracellular signaling, and immune response to infectious diseases.
Assuntos
Doenças Transmissíveis , Influenza Aviária , Embrião de Galinha , Animais , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Galinhas/genética , Galinhas/metabolismo , Filogenia , Influenza Aviária/genética , GenômicaRESUMO
MicroRNAs are involved in the immune systems of host animals and play essential roles in several immune-related pathways. In the current study, we investigated the systemic biological function of the chicken miRNA gga-miR-148a-3p on immune responses in chicken lines resistant and susceptible to HPAIV-H5N1. We found that gga-miR-148a expression in the lung tissue of H5N1-resistant chickens was significantly downregulated during HPAIV-H5N1 infection. Overexpression of gga-miR-148a and a reporter construct with wild type or mutant IFN-γ, MAPK11, and TGF-ß2 3' untranslated region (3' UTR)-luciferase in chicken fibroblasts showed that gga-miR-148a acted as a direct translational repressor of IFN-γ, MAPK11, and TGF-ß2 by targeting their 3' UTRs. Furthermore, miR-148a directly and negatively influenced the expression of signalling molecules related to the MAPK signalling pathway, including MAPK11, TGF-ß2, and Jun, and regulated antiviral responses through interferon-stimulated genes and MHC class I and class II genes by targeting IFN-γ. Downstream of the MAPK signalling pathway, several proinflammatory cytokines such as IL-1ß, IFN-γ, IL-6, TNF-α, IFN-ß, and interferon-stimulated genes were downregulated by the overexpression of gga-miR-148a. Our data suggest that gga-miR-148a-3p is an important regulator of the MAPK signalling pathway and antiviral response. These findings improve our understanding of the biological functions of gga-miR-148a-3p, the mechanisms underlying the MAPK signalling pathway, and the antiviral response to HPAIV-H5N1 infection in chickens as well as the role of gga-miR-148a-3p in improving the overall performance of chicken immune responses for breeding disease-resistant chickens.
Assuntos
Virus da Influenza A Subtipo H5N1 , MicroRNAs , Animais , Galinhas/genética , Galinhas/metabolismo , Fator de Crescimento Transformador beta2 , Virus da Influenza A Subtipo H5N1/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Interferon gama/genética , Imunidade , AntiviraisRESUMO
Exosomes are membrane vesicles containing proteins, lipids, DNA, mRNA, and micro RNA (miRNA). Exosomal miRNA from donor cells can regulate the gene expression of recipient cells. Here, Ri chickens were divided into resistant (Mx/A; BF2/B21) and susceptible (Mx/G; BF2/B13) trait by genotyping of Mx and BF2 genes. Then, Ri chickens were infected with H5N1, a highly pathogenic avian influenza virus (HPAIV). Exosomes were purified from blood serum of resistant chickens for small RNA sequencing. Sequencing data were analysed using FastQCv0.11.7, Cutadapt 1.16, miRBase v21, non-coding RNA database, RNAcentral 10.0, and miRDeep2. Differentially expressed miRNAs were determined using statistical methods, including fold-change, exactTest using edgeR, and hierarchical clustering. Target genes were predicted using miRDB. Gene ontology analysis was performed using gProfiler. Twenty miRNAs showed significantly different expression patterns between resistant control and infected chickens. Nine miRNAs were up-regulated and 11 miRNAs were down-regulated in the infected chickens compared with that in the control chickens. In target gene analysis, various immune-related genes, such as cytokines, chemokines, and signalling molecules, were detected. In particular, mitogen-activated protein kinase (MAPK) pathway molecules were highly controlled by differentially expressed miRNAs. The result of qRT-PCR for miRNAs was identical with sequencing data and miRNA expression level was higher in resistant than susceptible chickens. This study will help to better understand the host immune response, particularly exosomal miRNA expression against HPAIV H5N1 and could help to determine biomarkers for disease resistance.
Assuntos
Galinhas , Exossomos/genética , Influenza Aviária/virologia , MicroRNAs/genética , Doenças das Aves Domésticas/virologia , Animais , Virus da Influenza A Subtipo H5N1/fisiologiaRESUMO
Coccidiosis in chickens is an intestinal parasitic disease caused by protozoan parasites named Eimeria spp. In some Eimeria infections, intestinal lymphocytes are known to highly express chicken NK-lysin (cNK-lysin), an antimicrobial peptide with anticoccidial activity. Therefore, this study aims to investigate the expression of cNK-lysin in E. necatrix-infected chickens and its role in E. necatrix infection. The expression of cNK-lysin transcript was significantly increased in E. necatrix sporozoites-treated lymphocytes. In E. necatrix infection, cNK-lysin transcript was induced in intestinal lymphocytes but not in the spleen. The recombinant cNK-lysin exhibited anticoccidial activity against E. necatrix sporozoites as well as immunomodulatory activity on macrophages by inducing proinflammatory cytokines. These results indicated that E. necatrix infection induces high local expression of cNK-lysin and the secreted cNK-lysin helps protect coccidiosis.
Assuntos
Coccidiose , Eimeria , Doenças das Aves Domésticas , Animais , Galinhas , Coccidiose/veterinária , ProteolipídeosRESUMO
MicroRNAs (miRNAs) are small non-coding RNAs that contribute to host immune response as post-transcriptional regulation. The current study investigated the biological role of the chicken (Gallus gallus) microRNA-200a-3p (gga-miR-200a-3p), using 2 necrotic enteritis (NE) afflicted genetically disparate chicken lines, 6.3 and 7.2, as well as the mechanisms underlying the fundamental signaling pathways in chicken. The expression of gga-miR-200a-3p in the intestinal mucosal layer of NE-induced chickens, was found to be upregulated during NE infection in the disease-susceptible chicken line 7.2. To validate the target genes, we performed an overexpression analysis of gga-miR-200a-3p using chemically synthesized oligonucleotides identical to gga-miR-200a-3p, reporter gene analysis including luciferase reporter assay, and a dual fluorescence reporter assay in cultured HD11 chicken macrophage cell lines. Gga-miR-200a-3p was observed to be a direct transcriptional repressor of ZAK, MAP2K4, and TGFß2 that are involved in mitogen-activated protein kinase (MAPK) pathway by targeting the 3'-UTR of their transcripts. Besides, gga-miR-200a-3p may indirectly affect the expression of protein kinases including p38 and ERK1/2 at both transcriptional and translational levels, suggesting that this miRNA may function as an important regulator of the MAPK signaling pathway. Proinflammatory cytokines consisting of IL-1ß, IFN-γ, IL-12p40, IL-17A, and LITAF belonging to Th1 and Th17-type cytokines, were upregulated upon gga-miR-200a-3p overexpression. These findings have enhanced our knowledge of the immune function of gga-miR-200a-3p mediating the chicken immune response via regulation of the MAPK signaling pathway and indicate that this miRNA may serve as an important biomarker of diseases in domestic animals.
Assuntos
Galinhas , Enterite/veterinária , Imunidade Inata/genética , MicroRNAs/imunologia , Necrose/veterinária , Doenças das Aves Domésticas/imunologia , Animais , Enterite/genética , Enterite/imunologia , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/imunologia , Necrose/genética , Necrose/imunologia , Doenças das Aves Domésticas/genética , Transdução de SinaisRESUMO
OBJECTIVE: This study was conducted to identify duck liver-expressed antimicrobial peptide 2 (LEAP-2) and demonstrate its antimicrobial activity against various pathogens. METHODS: Tissue samples were collected from 6 to 8-week-old Pekin ducks (Anas platyrhynchos domesticus), total RNA was extracted, and cDNA was synthesized. To confirm the duck LEAP-2 transcript expression levels, quantitative real-time polymerase chain reaction was conducted. Two kinds of peptides (a linear peptide and a disulfide-type peptide) were synthesized to compare the antimicrobial activity. Then, antimicrobial activity assay and fluorescence microscopic analysis were conducted to demonstrate duck LEAP-2 bactericidal activity. RESULTS: The duck LEAP-2 peptide sequence showed high identity with those of other avian species (>85%), as well as more than 55% of identity with mammalian sequences. LEAP-2 mRNA was highly expressed in the liver with duodenum next, and then followed by lung, spleen, bursa and jejunum and was the lowest in the muscle. Both of LEAP-2 peptides efficiently killed bacteria, although the disulfide-type LEAP-2 showed more powerful bactericidal activity. Also, gram-positive bacteria was more susceptible to duck LEAP-2 than gram-negative bacteria. Using microscopy, we confirmed that LEAP-2 peptides could kill bacteria by disrupting the bacterial cell envelope. CONCLUSION: Duck LEAP-2 showed its antimicrobial activity against both gram-positive and gram-negative bacteria. Disulfide bonds were important for the powerful killing effect by disrupting the bacterial cell envelope. Therefore, duck LEAP-2 can be used for effective antibiotics alternatives.
RESUMO
OBJECTIVE: The inhibitory leukocyte immunoglobulin-like receptors (LILRBs) play an important role in innate immunity. The present study represents the first description of the cloning and structural and functional analysis of LILRB1 and LILRB3 isolated from two genetically disparate chicken lines. METHODS: Chicken LILRB1-3 genes were identified by bioinformatics approach. Expression studies were performed by transfection, quantitative polymerase chain reaction. Signal transduction was analyzed by western blots, immunoprecipitation and flow cytometric. Cytokine levels were determined by enzyme-linked immunosorbent assay. RESULTS: Amino acid homology and phylogenetic analyses showed that the homologies of LILRB1 and LILRB3 in the chicken line 6.3 to those proteins in the chicken line 7.2 ranged between 97%-99%, while homologies between chicken and mammal proteins ranged between 13%-19%, and 13%-69%, respectively. Our findings indicate that LILRB1 and LILRB3 subdivided into two groups based on the immunoreceptor tyrosine-based inhibitory motifs (ITIM) present in the transmembrane domain. Chicken line 6.3 has two ITIM motifs of the sequence LxYxxL and SxYxxV while line 7.2 has two ITIM motifs of the sequences LxYxxL and LxYxxV. These motifs bind to SHP-2 (protein tyrosine phosphatase, non-receptor type 11) that plays a regulatory role in immune functions. Moreover, our data indicate that LILRB1 and LILRB3 associated with and activated major histocompatibility complex (MHC) class I and ß2-microglobulin and induced the expression of transporters associated with antigen processing, which are essential for MHC class I antigen presentation. This suggests that LILRB1 and LILRB3 are transcriptional regulators, modulating the expression of components in the MHC class I pathway and thereby regulating immune responses. Furthermore, LILRB1 and LILRB3 activated Janus kinase2/tyrosine kinase 2 (JAK2/TYK2); signal transducer and activator of transcription1/3 (STAT1/3), and suppressor of cytokine signaling 1 genes expressed in Macrophage (HD11) cells, which induced Th1, Th2, and Th17 cytokines. CONCLUSION: These data indicate that LILRB1 and LILRB3 are innate immune receptors associated with SHP-2, MHC class I, ß2-microglobulin, and they activate the Janus kinase/signal transducer and activator of transcription signaling pathway. Thus, our study provides novel insights into the regulation of immunity and immunopathology.
RESUMO
The increasing occurrence of antibiotic-resistant bacteria combined with regulatory pressure and consumer demands for foods produced without antibiotics has caused the agricultural industry to restrict its practice of using antibiotic growth promoters (AGP) in food animals. The poultry industry is not immune to this trend, and has been actively seeking natural alternatives to AGP that will improve the health and growth performance of commercial poultry flocks. Bacillus probiotics have been gaining in popularity in recent years as an AGP alternative because of their health-promoting benefits and ability to survive the harsh manufacturing conditions of chicken feed production. This review provides an overview of several modes of action of some Bacillus direct-fed microbials as probiotics. Among the benefits of these direct-fed microbials are their production of naturally synthesized antimicrobial peptides, gut flora modulation to promote beneficial microbiota along the gastrointestinal tract, and various immunological and gut morphological alterations. The modes of action for increased performance are not well defined, and growth promotion is not equal across all Bacillus species or within strains. Appropriate screening and characterization of Bacillus isolates prior to commercialization are necessary to maximize poultry growth to meet the ultimate goal of eliminating AGP usage in animal husbandry.
Assuntos
Bacillus/fisiologia , Galinhas/crescimento & desenvolvimento , Microbioma Gastrointestinal/efeitos dos fármacos , Probióticos/farmacologia , Ração Animal/análise , Criação de Animais Domésticos , Animais , Galinhas/imunologia , Galinhas/microbiologia , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Aves DomésticasRESUMO
Interleukin-34 (IL-34) is a newly recognized cytokine with functions similar to macrophage colony-stimulating factor 1. It is expressed in macrophages and fibroblasts, where it induces cytokine production; however, the mechanism of chicken IL-34 (chIL-34) signaling has not been identified to date. The aim of this study was to analyze the signal transduction pathways and specific biological functions associated with chIL-34 in chicken macrophage (HD11) and fibroblast (OU2) cell lines. We found that IL-34 is a functional ligand for the colony-stimulating factor receptor (CSF-1R) in chicken cell lines. Treatment with chIL-34 increased the expression of Th1 and Th17 cytokines through phosphorylation of tyrosine and serine residues in Janus kinase (JAK) 2, tyrosine kinase 2 (TYK2), signal transducer and activator of transcription (STAT) 1, STAT3, and Src homology 2-containing tyrosine phosphatase 2 (SHP-2), which also led to phosphorylation of NF-κB1, p-mitogen-activated protein kinase kinase kinase 7 (TAK1), MyD88, suppressor of cytokine signaling 1 (SOCS1), and extracellular signal-regulated kinase 1 and 2 (ERK1/2). Taken together, these results suggest that chIL-34 functions by binding to CSF-1R and activating the JAK/STAT, nuclear factor κ B (NF-κB), and mitogen-activated protein kinase signaling pathways; these signaling events regulate cytokine expression and suggest roles for chIL-34 in innate and adaptive immunity.
Assuntos
Citocinas/biossíntese , Imunidade Inata/imunologia , Interleucinas/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Animais , Galinhas , Citocinas/imunologia , Fibroblastos/imunologia , Fibroblastos/patologia , Regulação da Expressão Gênica/genética , Interleucinas/imunologia , Ligantes , Macrófagos/imunologia , Macrófagos/patologia , Ligação Proteica/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Transdução de Sinais , Células Th1/imunologia , Células Th17/imunologiaRESUMO
The activating leukocyte immunoglobulin-like receptors (LILRAs) play an important role in innate immunity. However, most of the LILRA members have not been characterized in avian species including chickens. The present study is the first attempt at cloning, structural analysis and functional characterization of two LILRAs (LILRA2 and LILRA6) in chickens. Multiple sequence alignments and construction of a phylogenetic tree of chicken LILRA2 and LILRA6 with mammalian proteins revealed high conservation between chicken LILRA2 and LILRA6 and a close relationship between the chicken and mammalian proteins. The mRNA expression of LILRA2 and LILRA6 was high in chicken HD11 macrophages and the small intestine compared to that in several other tissues and cells tested. To examine the function of LILRA2 and LILRA6 in chicken immunity, LILRA2 and LILRA6 were transfected into HD11 cells. Our findings indicated that LILRA2 and LILRA6 are associated with the phosphorylation of Src kinases and SHP2, which play a regulatory role in immune functions. Moreover, LILRA6 associated with and activated MHC class I, ß2-microglobulin and induced the expression of transporters associated with antigen processing but LILRA2 did not. Furthermore, both LILRA2 and LILRA6 activated JAK-STAT, NF-κB, PI3K/AKT and ERK1/2 MAPK signaling pathways and induced Th1-, Th2- and Th17-type cytokines and Toll-like receptors. Collectively, this study indicates that LILRA2 and LILRA6 are essential for macrophage-mediated immune responses and they have the potential to complement the innate and adaptive immune system against pathogens.
Assuntos
Galinhas/imunologia , Citocinas/imunologia , Imunidade Inata , Macrófagos/imunologia , Receptores Imunológicos/imunologia , Sequência de Aminoácidos , Animais , Apresentação de Antígeno , Galinhas/genética , Clonagem Molecular , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Macrófagos/metabolismo , Filogenia , Receptores Imunológicos/química , Receptores Imunológicos/genética , Alinhamento de Sequência , Transdução de SinaisRESUMO
OBJECTIVE: Defensins are a large family of antimicrobial peptides and components of the innate immune system that invoke an immediate immune response against harmful pathogens. Defensins are classified into alpha-, beta-, and theta-defensins. Avian species only possess beta-defensins (AvBDs), and approximately 14 AvBDs (AvBD1-AvBD14) have been identified in chickens to date. Although substantial information is available on the conservation and phylogenetics, limited information is available on the expression and regulation of AvBD8 in chicken immune tissues and cells. METHODS: We examined AvBD8 protein expression in immune tissues of White Leghorn chickens (WL) by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (RT-qPCR). In addition, we examined AvBD8 expression in chicken T-, B-, macrophage-, and fibroblast-cell lines and its regulation in these cells after lipopolysaccharide (LPS) treatment by immunocytochemistry and RT-qPCR. RESULTS: Our results showed that chicken AvBD8 protein was strongly expressed in the WL intestine and in macrophages. AvBD8 gene expression was highly upregulated in macrophages treated with different LPS concentrations compared with that in T- and B-cell lines in a time-independent manner. Moreover, chicken AvBD8 strongly interacted with other AvBDs and with other antimicrobial peptides as determined by bioinformatics. CONCLUSION: Our study provides the expression and regulation of chicken AvBD8 protein in immune tissues and cells, which play crucial role in the innate immunity.
RESUMO
OBJECTIVE: Despite an increasing number of investigations into the pathophysiology of necrotic enteritis (NE) disease, etiology of NE-associated diseases, and gene expression profiling of NE-affected tissues, the microRNA (miRNA) profiles of NE-affected poultry have been poorly studied. The aim of this study was to induce NE disease in the genetically disparate Fayoumi chicken lines, and to perform non-coding RNA sequencing in the intestinal mucosal layer. METHODS: NE disease was induced in the Fayoumi chicken lines (M5.1 and M15.2), and non-coding RNA sequencing was performed in the intestinal mucosal layer of both NE-affected and uninfected chickens to examine the differential expression of miRNAs. Next, quantitative real-time polymerase chain reaction (real-time qPCR) was performed to further examine four miRNAs that showed the highest fold differences. Finally, bioinformatics analyses were performed to examine the four miRNAs target genes involvement in the signaling pathways, and to examine their interaction. RESULTS: According to non-coding RNA sequencing, total 50 upregulated miRNAs and 26 downregulated miRNAs were detected in the NE-induced M5.1 chickens. While 32 upregulated miRNAs and 11 downregulated miRNAs were detected in the NE-induced M15.2 chickens. Results of real-time qPCR analysis on the four miRNAs (gga-miR-9-5p, gga-miR-20b-5p, gga-miR-196-5p, and gga-let-7d) were mostly correlated with the results of RNAseq. Overall, gga-miR-20b-5p was significantly downregulated in the NE-induced M5.1 chickens and this was associated with the upregulation of its top-ranking target gene, mitogen-activated protein kinase, kinase 2. Further bioinformatics analyses revealed that 45 of the gene targets of gga-miR-20b-5p were involved in signal transduction and immune system-related pathways, and 35 of these targets were predicted to interact with each other. CONCLUSION: Our study is a novel report of miRNA expression in Fayoumi chickens, and could be very useful in understanding the role of differentially expressed miRNAs in a NE disease model.
RESUMO
The increasing number of legislative restrictions and the voluntary withdrawal of antibiotic growth promoters worldwide will continue to impact poultry health and production. The rising incidence of Clostridium infections and development of necrotic enteritis (NE) in commercial chickens has been associated with the withdrawal of antibiotics. High-throughput genomic analysis of intestinal tissues from NE-afflicted chickens showed alterations in the local immunity and gut microbiota. Therefore, a better understanding of host- and environmentally related factors on Clostridium perfringens infections will be necessary for the development of effective sustainable strategies aimed to reduce the negative consequences of NE. In this short review, we summarize the current knowledge on the role of host genomics and immunity in NE. The limited progress in understanding the complexity of host-pathogen interactions in NE underscores the urgent need for more fundamental research in host immunity against Clostridium pathogens in order to develop effective control strategies against NE.
Assuntos
Galinhas/imunologia , Infecções por Clostridium/veterinária , Clostridium perfringens/imunologia , Enterite/veterinária , Interações Hospedeiro-Patógeno , Doenças das Aves Domésticas/imunologia , Animais , Galinhas/genética , Infecções por Clostridium/imunologia , Clostridium perfringens/fisiologia , Enterite/imunologia , Necrose/veterináriaRESUMO
In the poultry industry, Eimeria spp. is one of the important pathogens which cause significant economic losses. We have previously generated a chicken monoclonal antibody (mAb), 6D-12-G10, with specificity for an antigen located in the apical cytoskeleton of Eimeria acervulina and with cross-reactive among Apicomplexan parasites, including other Eimeria spp., Toxoplasma, Neospora, and Cryptosporidium spp. Furthermore, the protein of Cryptosporidium parvum recognized by the 6D-12-G10 has been identified as elongation factor-1α (EF-1α). In the present study, to identify the target molecule of E. acervulina by the mAb, we performed two-dimensional Western blotting analysis. Finally, we found two positive molecules which are identified as EF-1α and a related protein. Our previous finding using C. parvum and the results in this study suggest that EF-1α could be associated with the invasion facilitated by the cytoskeleton at the apical region of zoites.
Assuntos
Antígenos de Protozoários/imunologia , Galinhas/parasitologia , Coccidiose/veterinária , Eimeria/imunologia , Fator 1 de Elongação de Peptídeos/metabolismo , Doenças das Aves Domésticas/parasitologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/imunologia , Western Blotting/veterinária , Coccidiose/parasitologia , Reações Cruzadas , Cryptosporidium parvum/imunologia , Cryptosporidium parvum/isolamento & purificação , Eimeria/isolamento & purificação , Ensaio de Imunoadsorção Enzimática/veterinária , Neospora/imunologia , Neospora/isolamento & purificação , Esporozoítos , Toxoplasma/imunologia , Toxoplasma/isolamento & purificaçãoRESUMO
The study aimed to compare the necrotic enteritis (NE)-induced transcriptome differences between the spleens of Marek's disease resistant chicken line 6.3 and susceptible line 7.2 co-infected with Eimeria maxima/Clostridium perfringens using RNA-Seq. Total RNA from the spleens of two chicken lines were used to make libraries, generating 42,736,296 and 42,617,720 usable reads, which were assembled into groups of 29,897 and 29,833 mRNA genes, respectively. The transcriptome changes were investigated using the differentially expressed genes (DEGs) package, which indicated 3,255, 2,468 and 2,234 DEGs of line 6.3, line 7.2, and comparison between two lines, respectively (fold change ≥2, p<0.01). The transcription levels of 14 genes identified were further examined using qRT-PCR. The results of qRT-PCR were consistent with the RNA-seq data. All of the DEGs were analysed using gene ontology terms, the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the DEGs in each term were found to be more highly expressed in line 6.3 than in line 7.2. RNA-seq analysis indicated 139 immune related genes, 44 CD molecular genes and 150 cytokines genes which were differentially expressed among chicken lines 6.3 and 7.2 (fold change ≥2, p<0.01). Novel mRNA analysis indicated 15,518 novel genes, for which the expression was shown to be higher in line 6.3 than in line 7.2 including some immune-related targets. These findings will help to understand host-pathogen interaction in the spleen and elucidate the mechanism of host genetic control of NE, and provide basis for future studies that can lead to the development of marker-based selection of highly disease-resistant chickens.
RESUMO
The phylum Apicomplexa comprises obligate intracellular parasites that infect vertebrates. All invasive forms of Apicomplexa possess an apical complex, a unique assembly of organelles localized to the anterior end of the cell and involved in host cell invasion. Previously, we generated a chicken monoclonal antibody (mAb), 6D-12-G10, with specificity for an antigen located in the apical cytoskeleton of Eimeria acervulina sporozoites. This antigen was highly conserved among Apicomplexan parasites, including other Eimeria spp., Toxoplasma, Neospora, and Cryptosporidium. In the present study, we identified the apical cytoskeletal antigen of Cryptosporidium parvum (C. parvum) and further characterized this antigen in C. parvum to assess its potential as a target molecule against cryptosporidiosis. Indirect immunofluorescence demonstrated that the reactivity of 6D-12-G10 with C. parvum sporozoites was similar to those of anti-ß- and anti-γ-tubulins antibodies. Immunoelectron microscopy with the 6D-12-G10 mAb detected the antigen both on the sporozoite surface and underneath the inner membrane at the apical region of zoites. The 6D-12-G10 mAb significantly inhibited in vitro host cell invasion by C. parvum. MALDI-TOF/MS and LC-MS/MS analysis of tryptic peptides revealed that the mAb 6D-12-G10 target antigen was elongation factor-1α (EF-1α). These results indicate that C. parvum EF-1α plays an essential role in mediating host cell entry by the parasite and, as such, could be a candidate vaccine antigen against cryptosporidiosis.
Assuntos
Antígenos de Protozoários/imunologia , Cryptosporidium parvum/imunologia , Fator 1 de Elongação de Peptídeos/imunologia , Proteínas de Protozoários/imunologia , Esporozoítos/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Linhagem Celular Tumoral , Membrana Celular/imunologia , Membrana Celular/metabolismo , Criptosporidiose/genética , Criptosporidiose/imunologia , Criptosporidiose/metabolismo , Criptosporidiose/prevenção & controle , Cryptosporidium parvum/metabolismo , Cryptosporidium parvum/patogenicidade , Masculino , Camundongos , Camundongos SCID , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Vacinas Protozoárias/imunologia , Esporozoítos/metabolismoRESUMO
Both interleukin-17A (IL-17A) and IL-17F are proinflammatory cytokines that have an important role in intestinal homeostasis via receptor signaling. These cytokines have been characterized in chickens, but very little is known about their receptors and their functional activity. We provide here the first description of the sequence analysis, bioactivity, and comparative expression analysis of chicken IL-17RA (chIL-17RA) in chickens infected with Salmonella and Eimeria, two major infectious agents of gastrointestinal diseases of poultry of economic importance. A full-length chIL-17RA cDNA with a 2,568-bp coding region was identified from chicken thymus cDNA. chIL-17RA shares ca. 46% identity with mammalian homologues and 29.2 to 31.5% identity with its piscine counterparts. chIL-17RA transcript expression was relatively high in the thymus and in the chicken macrophage cell line HD11. The chIL-17RA-specific small interfering RNA inhibits interleukin-6 (IL-6), IL-8, and IL-1ß mRNA expression in chicken embryo fibroblast cells (but not in DF-1 cells) stimulated with chIL-17A or chIL-17F. Interaction between chIL-17RA and chIL-17A was confirmed by coimmunoprecipitation. Downregulation of chIL-17RA occurred in concanavalin A- or lipopolysaccharide-activated splenic lymphocytes but not in poly(I·C)-activated splenic lymphocytes. In Salmonella- and Eimeria-infected chickens, the expression levels of the chIL-17RA transcript were downregulated in intestinal tissues from chickens infected with two Eimeria species, E. tenella or E. maxima, that preferentially infect the cecum and jejunum, respectively. However, chIL-17RA expression was generally unchanged in Salmonella infection. These results suggest that chIL-17RA has an important role in mucosal immunity to intestinal intracellular parasite infections such as Eimeria infection.
Assuntos
Galinhas/genética , Coccidiose/genética , Regulação para Baixo/genética , Receptores de Interleucina-17/genética , Sequência de Aminoácidos , Animais , Células COS , Linhagem Celular , Embrião de Galinha , Galinhas/parasitologia , Chlorocebus aethiops , Clonagem Molecular/métodos , Coccidiose/parasitologia , DNA Complementar/genética , Eimeria , Fibroblastos/parasitologia , Interleucinas/genética , Intestinos/parasitologia , Linfócitos/metabolismo , Macrófagos/parasitologia , Masculino , Dados de Sequência Molecular , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/parasitologia , RNA Mensageiro/genética , Salmonella/genética , Alinhamento de SequênciaRESUMO
Necrotic enteritis (NE) is a re-emerging disease as a result of increased restriction on the use of antibiotics in poultry. However, the molecular mechanisms underlying the pathogenesis of NE are unclear. Small RNA transcriptome analysis was performed using spleen and intestinal intraepithelial lymphocytes (IEL) from 2 inbred chicken lines selected for resistance or susceptibility to Marek's disease (MD) in an experimentally induced model of avian NE to investigate whether microRNA (miRNA) control the expression of genes associated with host response to pathogen challenge. Unique miRNA represented only 0.02 to 0.04% of the total number of sequences obtained, of which 544 were unambiguously identified. Hierarchical clustering revealed that most of miRNA in IEL were highly expressed in the MD-susceptible line 7.2 compared with MD-resistant line 6.3. Reduced CXCL14 gene expression was correlated with differential expression of several unique miRNA in MD-resistant chickens, whereas TGFßR2 gene expression was correlated with altered gga-miR-216 miRNA levels in MD-susceptible animals. In conclusion, miRNA profiling and deep sequencing of small RNA in experimental models of infectious diseases may be useful for further understanding of host-pathogen interactions, and for providing insights into genetic markers of disease resistance.
Assuntos
Galinhas , Infecções por Clostridium/veterinária , Coccidiose/veterinária , MicroRNAs/genética , Doenças das Aves Domésticas/genética , Transcriptoma , Animais , Infecções por Clostridium/genética , Infecções por Clostridium/microbiologia , Clostridium perfringens/fisiologia , Coccidiose/genética , Coccidiose/parasitologia , Eimeria/fisiologia , Enterite/genética , Enterite/microbiologia , Enterite/parasitologia , Enterite/veterinária , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Intestinos/parasitologia , Linfócitos/metabolismo , Linfócitos/microbiologia , Linfócitos/parasitologia , MicroRNAs/metabolismo , Dados de Sequência Molecular , Necrose/genética , Necrose/microbiologia , Necrose/parasitologia , Necrose/veterinária , Filogenia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/parasitologia , Análise de Sequência de DNA/veterinária , Baço/metabolismo , Baço/microbiologia , Baço/parasitologiaRESUMO
Interleukin-23 (IL-23) is a recently identified member of the IL-12 family of heterodimeric cytokines that play a critical role in regulating T helper cell function. IL-12 and IL-23 share a common p40 subunit, but differ in their p35 and p19 subunits, respectively. This difference in subunit composition results in distinct signaling pathways and biological functions for IL-12 and IL-23. Here, we report the functional characterization and immunomodulatory properties of chicken IL-12 and IL-23 using the panels of newly developed mouse anti-IL-12p40, IL-12p35-α and IL-23p19 monoclonal antibodies (mAbs). Western blot and indirect ELISA analysis demonstrated that the anti-chicken IL-12p40 mAbs (chIL-12p40; #10G10F4 and #10D8G2) bound to both recombinant proteins (IL-12 and IL-23), the anti-chicken IL-12p35 mAb (chIL-12p35; #2F1) specifically recognized recombinant IL-12, and the anti-chicken IL-23p19 mAb (chIL-23p19; #15A3) exhibited specificity for recombinant IL-23, without any cross-reactivity. Two ELISAs detecting specific chicken IL-12 (#10G10F4 and #2F1) or IL-23 (#10D8G2 and #15A3) were developed using newly developed mAb combinations, #10G10F4/ #2F1 and #10D8G2/#15A3 for IL-12 and IL-23, respectively, identified through a pairing assay. The levels of IL-12 and IL-23 in Resiquimod-848 stimulated-HD11 chicken macrophage cells were monitored over time using antigen-capture sandwich ELISA developed in this study. Furthermore, the levels of chicken IL-12 and IL-23 in the circulation of Eimeria maxima (E. maxima) and Eimeria tenella (E. tenella)-infected chickens were determined. Notably, the anti-chIL-12p40 mAbs (#10G10F4 and #10D8G2) neutralized the function of both chIL-12 and chIL-23 proteins, which share the p40 subunit, while the anti-chIL-23p19 mAb (#15A3) specifically neutralized chIL-23 protein in HD11 cells in vitro. The anti-chIL-12p35 mAb (#2F1), which is specific to the p35 subunit of IL-12, showed a partial neutralizing effect on chIL-12 protein. Collectively, our study validates the specificity and significance of 2 newly developed antigen-capture immunoassays for chIL-12 and chIL-23 which will expand our understanding of the functional characteristics of IL-12 and IL-23 and their association in normal and diseased chickens. These mAbs for each subunit, anti-chIL-12p35, anti-chIL-12p40 and anti-chIL-23p19, will serve as valuable immune reagents to elucidate host immune responses against disease pathogenesis in both fundamental and applied studies of avian species.
Assuntos
Anticorpos Monoclonais , Galinhas , Interleucina-12 , Interleucina-23 , Animais , Galinhas/imunologia , Anticorpos Monoclonais/imunologia , Camundongos , Interleucina-23/imunologia , Interleucina-12/imunologia , Interleucina-12/metabolismo , Ensaio de Imunoadsorção Enzimática/veterinária , Proteínas Aviárias/imunologia , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Camundongos Endogâmicos BALB CRESUMO
This study describes the first successful cloning and functional characterization of chicken CX3CL1, a chemokine involved in immune cell migration and inflammatory responses. Evolutionary analyses revealed its close relation to CX3CL1 from other avian species, particularly duck, turkey, and quail. Structurally, chicken CX3CL1 includes a signal peptide and a chemokine interleukin-8-like domain characterized by unique alpha-helices and disulfide bonds. Additionally, we produced and purified recombinant CX3CL1 protein and assessed its endotoxin levels. Chemotaxis assays revealed that CX3CL1 significantly enhances the migration of HD11 macrophages and CU91 T cells. Furthermore, recombinant CX3CL1 induced the expression of pro-inflammatory cytokines (TNF-α, IFN-ß, IFN-γ, IL-6, and CCL20) in a time-dependent manner, while exerting differential effects on anti-inflammatory cytokines (IL-4, IL-10). Conversely, transfection with siCX3CL1 or siCX3CR1 led to the downregulation of these responses. We also observed activation of the MAPK, NF-κB, and JAK/STAT pathways, evidenced by increased phosphorylation of key signaling molecules. These findings underscore the crucial role of chicken CX3CL1 in regulating immune responses, cell migration, and the activation of key signaling pathways. This study provides valuable insights into the immunomodulatory functions of soluble CX3CL1, highlighting its potential as a therapeutic target for inflammatory conditions and enhancing our understanding of immune cell dynamics.