Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Int J Mol Sci ; 22(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34639187

RESUMO

Fenitrothion is an insecticide belonging to the organophosphate family of pesticides that is widely used around the world in agriculture and living environments. Today, it is one of the most hazardous chemicals that causes severe environmental pollution. However, detection of fenitrothion residues in the environment is considered a significant challenge due to the small molecule nature of the insecticide and lack of molecular recognition elements that can detect it with high specificity. We performed in vitro selection experiments using the SELEX process to isolate the DNA aptamers that can bind to fenitrothion. We found that newly discovered DNA aptamers have a strong ability to distinguish fenitrothion from other organophosphate insecticides (non-specific targets). Furthermore, we identified a fenitrothion-specific aptamer; FenA2, that can interact with Thioflavin T (ThT) to produce a label-free detection mode with a Kd of 33.57 nM (9.30 ppb) and LOD of 14 nM (3.88 ppb). Additionally, the FenA2 aptamer exhibited very low cross-reactivity with non-specific targets. This is the first report showing an aptamer sensor with a G4-quadruplex-like structure to detect fenitrothion. Moreover, these aptamers have the potential to be further developed into analytical tools for real-time detection of fenitrothion from a wide range of samples.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Brassica/metabolismo , Fenitrotion/análise , Inseticidas/análise , Extratos Vegetais/análise , Técnica de Seleção de Aptâmeros/métodos , Brassica/efeitos dos fármacos , Fenitrotion/toxicidade , Inseticidas/toxicidade
2.
Planta ; 247(6): 1439-1448, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29536220

RESUMO

MAIN CONCLUSION: Under normal growth conditions, Arabidopsis VOZ1 interacts with DREB2C and acts as a transcriptional repressor by reducing DNA binding of DREB2C. Under heat stress conditions, VOZ1 is degraded by ubiquitination, and DREB2C, which is freed from VOZ1, functions as a transcription activator. To investigate the mechanism by which the DEHYDRATION-RESPONSIVE ELEMENT-BINDING FACTOR 2C (DREB2C)-dependent signaling cascade regulates heat stress (HS) responses, we performed a yeast two-hybrid screening using the DREB2C APETALA2 (AP2) DNA-binding domain as the bait against a cDNA library derived from Arabidopsis. We identified VASCULAR PLANT ONE-ZINC-FINGER 1 (VOZ1) and further verified positive VOZ1 colonies by repeating the X-α-Gal second screening and pull-down assay in vitro. Deletion analysis of VOZ1 demonstrated that the amino acid residues in its transcriptional regulatory, zinc finger and NAC domains are essential for the DREB2C-AP2 interaction. Although the HsfA3 promoter was strongly transactivated by DREB2C in Arabidopsis protoplasts, transient co-expression of VOZ1 (35S:VOZ1) with DREB2C (35S:DREB2C) in Arabidopsis protoplasts resulted in a significant decrease in the activity of GUS fused to the HsfA3 promoter (Prom HsfA3 :GUS), indicating that VOZ1 acts as a repressor of DREB2C. In electrophoretic mobility shift assays (EMSAs), the signal generated by binding of DREB2C to DRE gradually decreased with increasing VOZ1 level, providing evidence that the interaction of the DREB2C AP2 DNA-binding domain with DRE is blocked by VOZ1. Additionally, a voz1 voz2-2 double knockout mutant exhibited increased HS tolerance, likely due to the suppressive function of VOZs. Taken together, these results demonstrate that VOZ1 functions as a negative regulator of HS-inducible DREB2C signaling by blocking access to the AP2 DNA-binding domain of DREB2C.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Ligação a DNA/metabolismo , Resposta ao Choque Térmico , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Desidratação , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Regiões Promotoras Genéticas/genética , Transdução de Sinais , Termotolerância , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
3.
Biochem Biophys Res Commun ; 452(1): 91-8, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25150152

RESUMO

Plant dehydration-responsive element binding factors (DREBs) are transcriptional regulators of the APETELA2/Ethylene Responsive element-binding Factor (AP2/ERF) family that control expression of abiotic stress-related genes. We show here that under conditions of mild heat stress, constitutive overexpression seeds of transgenic DREB2C overexpression Arabidopsis exhibit delayed germination and increased abscisic acid (ABA) content compared to untransformed wild-type (WT). Treatment with fluridone, an inhibitor of the ABA biosynthesis abrogated these effects. Expression of an ABA biosynthesis-related gene, 9-cis-epoxycarotenoid dioxygenase 9 (NCED9) was up-regulated in the DREB2C overexpression lines compared to WT. DREB2C was able to trans-activate expression of NCED9 in Arabidopsis leaf protoplasts in vitro. Direct and specific binding of DREB2C to a complete DRE on the NCED9 promoter was observed in electrophoretic mobility shift assays. Exogenous ABA treatment induced DREB2C expression in germinating seeds of WT. Vegetative growth of transgenic DREB2C overexpression lines was more strongly inhibited by exogenous ABA compared to WT. These results suggest that DREB2C is a stress- and ABA-inducible gene that acts as a positive regulator of ABA biosynthesis in germinating seeds through activating NCED9 expression.


Assuntos
Ácido Abscísico/biossíntese , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/fisiologia , Germinação , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas
4.
Transgenic Res ; 23(1): 109-23, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23868510

RESUMO

Phytocystatins are proteinaceous inhibitors of cysteine proteases. They have been implicated in the regulation of plant protein turnover and in defense against pathogens and insects. Here, we have characterized an Arabidopsis phytocystatin family gene, Arabidopsis thaliana phytocystatin 4 (AtCYS4). AtCYS4 was induced by heat stress. The heat shock tolerance of AtCYS4-overexpressing transgenic plants was greater than that of wild-type and cys4 knock-down plants, as measured by fresh weight and root length. Although no heat shock elements were identified in the 5'-flanking region of the AtCYS4 gene, canonical ABA-responsive elements (ABREs) and dehydration-responsive elements (DREs) were found. Transient promoter activity measurements showed that AtCYS4 expression was up-regulated in unstressed protoplasts by co-expression of DRE-binding factor 2s (DREB2s), especially by DREB2C, but not by bZIP transcription factors that bind to ABREs (ABFs, ABI5 and AREBs). DREB2C bound to and activated transcription from the two DREs on the AtCYS4 promoter although some preference was observed for the GCCGAC DRE element over the ACCGAC element. AtCYS4 transcript and protein levels were elevated in transgenic DREB2C overexpression lines with corresponding decline of endogenous cysteine peptidase activity. We propose that AtCYS4 functions in thermotolerance under the control of the DREB2C cascade.


Assuntos
Proteínas de Arabidopsis/genética , Cistatinas/genética , Proteínas de Ligação a DNA/genética , Estresse Fisiológico/genética , Ativação Transcricional , Arabidopsis/genética , Proteínas de Arabidopsis/biossíntese , Cistatinas/metabolismo , Proteínas de Ligação a DNA/biossíntese , Regulação da Expressão Gênica de Plantas , Golpe de Calor , Resposta ao Choque Térmico/genética , Regiões Promotoras Genéticas
5.
Plant Cell Rep ; 33(8): 1239-54, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24737413

RESUMO

KEY MESSAGE: DREB2C acts as a transcriptional activator of the salt tolerance-related COLD - REGULATED 15A gene. DEHYDRATION-RESPONSIVE ELEMENT BINDING FACTOR 2C (DREB2C) regulates plant responses to heat stress. We report here that DREB2C is induced by NaCl stress in Arabidopsis, based on quantitative RT-PCR analyses of transcript levels and DREB2C promoter-controlled GUS activity assays. Constitutive overexpression of DREB2C from the cauliflower mosaic virus (CaMV) 35S promoter led to enhanced salt tolerance in transgenic Arabidopsis and canola plants that was characterized by higher chlorophyll content, lower tissue Na(+) content, reduced rate of water loss, and tighter membrane integrity in plants grown in NaCl-containing medium. Basal expression of the stress-responsive genes COLD-REGULATED 15A (COR15A), RESPONSIVE TO DEHYDRATION (RD) 29A and RD29B, was higher in transgenic DREB2C-overexpressing Arabidopsis plants than in the wild-type. Promoter transactivation assays and electrophoretic mobility-shift assays showed that DREB2C interacts directly with the three DREs in the COR15A promoter, both in vivo and in vitro. Transgenic Arabidopsis constitutively overexpressing COR15A from the CaMV35S promoter exhibited greater NaCl tolerance than the untransformed wild-type. Taken together, the data suggest that DREB2C functions as transcriptional activator that promotes NaCl tolerance, in part through upregulation of the stress-responsive gene COR15A.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Brassica napus/fisiologia , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Cloreto de Sódio/farmacologia , Proteínas de Arabidopsis/metabolismo , Brassica napus/efeitos dos fármacos , Brassica napus/genética , Clorofila/metabolismo , Proteínas e Peptídeos de Choque Frio/genética , Proteínas e Peptídeos de Choque Frio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Expressão Gênica , Genes Reporter , Folhas de Planta/genética , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA de Plantas/genética , Estresse Fisiológico , Água/análise
6.
Plant Cell Rep ; 33(12): 2015-21, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25163803

RESUMO

KEY MESSAGE: ZAT11, a Zinc Finger of Arabidopsis Thaliana 11, is a dual-function transcriptional regulator that positively regulates primary root growth but negatively regulates Ni (2+) tolerance. Zinc Finger of Arabidopsis Thaliana 11 (ZAT11) is a C2H2-type zinc finger protein that has been reported to function as an active transcriptional repressor. However, the biological function of ZAT11 remains unknown. Here we show that GFP-tagged ZAT11 is targeted to the nucleus. Analysis of plants expressing ZAT11 promoter-GUS showed that ZAT11 is highly expressed in roots and particularly in root tips. To identify the biological function of ZAT11, we constructed three independent lines of ZAT11 overexpressing transgenic plant (ZAT11 OE). ZAT11 OE enhanced the elongation of primary root but reduced the metal tolerance against nickel ion (Ni(2+)). The reduced Ni(2+) tolerance of ZAT11 OE was correlated with decreased accumulation of Ni(2+) in plants. The decreased accumulation of Ni(2+) in ZAT11 OE was caused by the reduced transcription of a vacuolar Ni(2+) transporter gene. Taken together, our results suggest that ZAT11 is a dual function transcriptional regulator that positively regulates primary root growth but negatively regulates Ni(2+) tolerance.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Níquel/toxicidade , Fatores de Transcrição/metabolismo , Dedos de Zinco , Adaptação Fisiológica/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Fatores de Transcrição/genética , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
7.
Life (Basel) ; 13(3)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36983842

RESUMO

Bcl-2-associated anthanogene (BAG) family proteins regulate plant defense against biotic and abiotic stresses; however, the function and precise mechanism of action of each individual BAG protein are not yet clear. In this study, we investigated the biochemical and molecular functions of the Arabidopsis thaliana BAG2 (AtBAG2) protein, and elucidated its physiological role under stress conditions using mutant plants and transgenic yeast strains. The T-DNA insertion atbag2 mutant plants were highly susceptible to heat shock, whereas transgenic yeast strains ectopically expressing AtBAG2 exhibited outstanding thermotolerance. Moreover, a biochemical analysis of GST-fused recombinant proteins produced in bacteria revealed that AtBAG2 exhibits molecular chaperone activity, which could be attributed to its BAG domain. The relevance of the molecular chaperone function of AtBAG2 to the cellular heat stress response was confirmed using yeast transformants, and the experimental results showed that overexpression of the AtBAG2 sequence encoding only the BAG domain was sufficient to impart thermotolerance. Overall, these results suggest that the BAG domain-dependent molecular chaperone activity of AtBAG2 is indispensable for the heat stress response of Arabidopsis. This is the first report demonstrating the role of AtBAG2 as a sole molecular chaperone in Arabidopsis.

8.
Biochim Biophys Acta ; 1810(12): 1317-22, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21756975

RESUMO

BACKGROUND: The C2 domain is a Ca(2+)/phospholipid-binding motif found in many proteins involved in signal transduction or membrane trafficking. OsERG3 is a homolog of OsERG1, a gene encoding a small C2-domain protein in rice. METHODS: OsERG3 Ca(2+)-binding and phospholipid-binding assays were carried out using (3)H-labeled phospholipid liposomes and a (45)Ca(2+) overlay assay, respectively. Cytosolic expression of OsERG3 was investigated by Western blot analysis and the OsERG3::smGFP transient expression assay. RESULTS: OsERG3 transcript levels were greatly enhanced by treatment with a fungal elicitor and Ca(2+)-ionophore. OsERG3 protein proved unable to interact with phospholipids regardless of the presence or absence of Ca(2+) ions. Nonetheless, OsERG3 displayed calcium-binding activity in an in vitro(45)Ca(2+)-binding assay, a property not observed with OsERG1. The cytosolic location of OsERG3 was not altered by the presence of fungal elicitor or Ca(2+)-ionophore. CONCLUSIONS: OsERG3 encodes a small C2-domain protein consisting of a single C2 domain. OsERG3 binds Ca(2+) ions but not phospholipids. OsERG3 is a cytosolic soluble protein. The OsERG3 gene may play a role in signaling pathway involving Ca(2+) ions. GENERAL SIGNIFICANCE: The data demonstrate that OsERG3 is an unusual small C2-domain protein containing a Ca(2+)-binding module but lacking phospholipid-binding properties.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Oryza/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , RNA Mensageiro/genética , Homologia de Sequência de Aminoácidos , Transdução de Sinais
9.
Biochem Biophys Res Commun ; 422(1): 181-6, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22575450

RESUMO

Mitogen-activated protein kinases (MPKs) are involved in a number of signaling pathways that control plant development and stress tolerance via the phosphorylation of target molecules. However, so far only a limited number of target molecules have been identified. Here, we provide evidence that MYB41 represents a new target of MPK6. MYB41 interacts with MPK6 not only in vitro but also in planta. MYB41 was phosphorylated by recombinant MPK6 as well as by plant MPK6. Ser(251) in MYB41 was identified as the site phosphorylated by MPK6. The phosphorylation of MYB41 by MPK6 enhanced its DNA binding to the promoter of a LTP gene. Interestingly, transgenic plants over-expressing MYB41(WT) showed enhanced salt tolerance, whereas transgenic plants over-expressing MYB41(S251A) showed decreased salt tolerance during seed germination and initial root growth. These results indicate that the phosphorylation of MYB41 by MPK6 is required for the biological function of MYB41 in salt tolerance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Tolerância ao Sal , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Fosforilação , Serina/genética , Serina/metabolismo , Fatores de Transcrição/genética
10.
J Integr Plant Biol ; 54(9): 640-51, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22716647

RESUMO

The dehydration-responsive element-binding factor 2C (DREB2C) is a member of the CBF/DREB subfamily of proteins, which contains a single APETALA2/Ethylene responsive element-binding factor (AP2/ERF) domain. To identify the expression pattern of the DREB2C gene, which contains multiple transcription cis-regulatory elements in its promoter, an approximately 1.4 kb upstream DREB2C sequence was fused to the ß-glucuronidase reporter gene (GUS) and the recombinant p1244 construct was transformed into Arabidopsis thaliana (L.) Heynh. The promoter of the gene directed prominent GUS activity in the vasculature in diverse young dividing tissues. Upon applying heat stress (HS), GUS staining was also enhanced in the vasculature of the growing tissues. Analysis of a series of 5'-deletions of the DREB2C promoter revealed that a proximal upstream sequence sufficient for the tissue-specific spatial and temporal induction of GUS expression by HS is localized in the promoter region between -204 and -34 bps relative to the transcriptional start site. Furthermore, electrophoretic mobility shift assay (EMSA) demonstrated that nuclear protein binding activities specific to a -120 to -32 bp promoter fragment increased after HS. These results indicate that the TATA-proximal region and some latent trans-acting factors may cooperate in HS-induced activation of the Arabidopsis DREB2C promoter.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Especificidade de Órgãos/genética , Regiões Promotoras Genéticas , Estresse Fisiológico/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Pareamento de Bases/genética , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Glucuronidase/metabolismo , Resposta ao Choque Térmico/genética , Proteínas Nucleares/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica/genética , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência/genética , TATA Box/genética , Fatores de Tempo
11.
Biochem Biophys Res Commun ; 408(1): 78-83, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21458419

RESUMO

Proteomic analysis of a rice callus led to the identification of 10 abscisic acid (ABA)-induced proteins as putative products of the embryo-specific promoter candidates. 5'-flanking sequence of 1 Cys-Prx, a highly-induced protein gene, was cloned and analyzed. The transcription initiation site of 1 Cys-Prx maps 96 nucleotides upstream of the translation initiation codon and a TATA-box and putative seed-specific cis-acting elements, RYE and ABRE, are located 26, 115 and 124 bp upstream of the transcription site, respectively. ß-glucuronidase (GUS) expression driven by the 1 Cys-Prx promoters was strong in the embryo and aleurone layer and the activity reached up to 24.9 ± 3.3 and 40.5 ± 2.1 pmol (4 MU/min/µg protein) in transgenic rice seeds and calluses, respectively. The activity of the 1 Cys-Prx promoters is much higher than that of the previously-identified embryo-specific promoters, and comparable to that of strong endosperm-specific promoters in rice. GUS expression driven by the 1 Cys-Prx promoters has been increased by ABA treatment and rapidly induced by wounding in callus and at the leaf of the transgenic plants, respectively. Furthermore, ectopic expression of the GUS construct in Arabidopsis suggested that the 1 Cys-Prx promoter also has strong activity in seeds of dicot plants.


Assuntos
Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , Sementes/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Genes Reporter , Glucuronidase/genética , Dados de Sequência Molecular , Oryza/efeitos dos fármacos , Iniciação Traducional da Cadeia Peptídica , Plantas Geneticamente Modificadas/efeitos dos fármacos , Proteômica
12.
Biochem Biophys Res Commun ; 401(2): 238-44, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20849812

RESUMO

The dehydration-responsive element binding protein (DREB) family is important in regulating plant responses to abiotic stresses. DREB2C is one of the Arabidopsis class 2 DREBs and is induced by heat stress (HS). Here, we present data concerning the interaction of DREB2C with heat shock factor A3 (HsfA3) in the HS signal transduction cascade. RT-PCR showed that HsfA3 is the most up-regulated gene among the 21 Arabidopsis Hsfs in transgenic plants over-expressing DREB2C. DREB2C and HsfA3 displayed similar transcription patterns in response to HS and DREB2C specifically transactivated the DRE-dependent transcription of HsfA3 in Arabidopsis mesophyll protoplasts. Yeast one-hybrid assays and invitro electrophoretic mobility shift assays further showed that DREB2C interacts with two DREs located in the HsfA3 promoter with a binding preference for the distal DRE2. Deletion mutants of DREB2C indicated that transactivation activity was located in the C-terminal region. In addition, dual activator-reporter assays showed that the induction of heat shock protein (Hsp) genes in transgenic plants could be attributed to the transcriptional activity of HsfA3. Taken together, these results indicate that DREB2C and HsfA3 are key players in regulating the heat tolerance of Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/genética , Proteínas de Plantas/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional , Arabidopsis/genética , Fatores de Transcrição de Choque Térmico , Técnicas do Sistema de Duplo-Híbrido
13.
Physiol Plant ; 138(2): 191-204, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20053182

RESUMO

Many plant hormones are involved in coordinating the growth responses of plants under stress. However, not many mechanistic studies have explored how plants maintain the balance between growth and stress responses. Brassinosteroids (BRs), plant-specific steroid hormones, affect many aspects of plant growth and development over a plant's lifetime. In this study we determined that exogenous treatment of BR helped the plant overcome the cold condition only when pretreated with less than 1 nM, and the brassinosteroid-insensitive 1 (bri1) mutation, which results in defective BR signaling and subsequent dwarfism, generates an increased tolerance to cold. In contrast, BRI1-overexpressing plants were more sensitive to the same stress than wild-type. We found that the bri1 mutant and BRI1-overexpressing transgenic plants contain higher basal level of expression of CBFs/DREB1s than wild-type. However, representative cold stress-related genes were regulated with the same pattern to cold in wild-type, bri1-9 and BRI1 overexpressing plants. To examine the global gene expression and compare the genes that show differential expression pattern in bri1-9 and BRI1-GFP plants other than CBFs/DREB1s, we analyzed differential mRNA expression using the cDNA microarray analysis in the absence of stress. Endogenous expression of both stress-inducible genes as well as genes encoding transcription factors that drive the expression of stress-inducible genes were maintained at higher levels in bri1-9 than either in wild-type or in BRI1 overexpressing plants. This suggests that the bri1-9 mutant could always be alert to stresses that might be exerted at any times by constitutive activation of subsets of defense.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Temperatura Baixa , Reguladores de Crescimento de Plantas/farmacologia , Proteínas Quinases/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Quinases/genética , Transdução de Sinais
14.
Plant Cell Rep ; 29(11): 1297-304, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20820784

RESUMO

Plants express many calmodulins (CaMs) and calmodulin-like (CML) proteins that sense and transduce different Ca(2+) signals. Previously, we reported divergent soybean (Glycine max) CaM isoforms (GmCaM4/5) with differential abilities to activate CaM-dependent enzymes. To elucidate biological functions of divergent CaM proteins, we isolated a cDNA encoding a CML protein, AtCML8, from Arabidopsis. AtCML8 shows highest identity with GmCaM4 at the protein sequence level. Expression of AtCML8 was high in roots, leaves, and flowers but low in stems. In addition, the expression of AtCML8 was induced by exposure to salicylic acid or NaCl. AtCML8 showed typical characteristics of CaM such as Ca(2+)-dependent electrophoretic mobility shift and Ca(2+) binding ability. In immunoblot analyses, AtCML8 was recognized only by antiserum against GmCaM4 but not by GmCaM1 antibodies. Interestingly, AtCML8 was able to activate phosphodiesterase (PDE) but did not activate NAD kinase. These results suggest that AtCML8 acts as a CML protein in Arabidopsis with characteristics similar to soybean divergent GmCaM4 at the biochemical levels.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Calmodulina/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Calmodulina/genética , DNA Complementar/genética , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ácido Salicílico/farmacologia , Análise de Sequência de DNA , Cloreto de Sódio/farmacologia
15.
Plant Cell Rep ; 29(8): 905-15, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20526604

RESUMO

The phytocystatins of plants are members of the cystatin superfamily of proteins, which are potent inhibitors of cysteine proteases. The Arabidopsis genome encodes seven phytocystatin isoforms (AtCYSs) in two distantly related AtCYS gene clusters. We selected AtCYS1 and AtCYS2 as representatives for each cluster and then generated transgenic plants expressing the GUS reporter gene under the control of each gene promoter. These plants were used to examine AtCYS expression at various stages of plant development and in response to abiotic stresses. Histochemical analysis of AtCYS1 promoter- and AtCYS2 promoter-GUS transgenic plants revealed that these genes have similar but distinct spatial and temporal expression patterns during normal development. In particular, AtCYS1 was preferentially expressed in the vascular tissue of all organs, whereas AtCYS2 was expressed in trichomes and guard cells in young leaves, caps of roots, and in connecting regions of the immature anthers and filaments and the style and stigma in flowers. In addition, each AtCYS gene has a unique expression profile during abiotic stresses. High temperature and wounding stress enhanced the expression of both AtCYS1 and AtCYS2, but the temporal and spatial patterns of induction differed. From these data, we propose that these two AtCYS genes play important, but distinct, roles in plant development and stress responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cistatinas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Sequência de Bases , Cistatinas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Dados de Sequência Molecular , Família Multigênica , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Regiões Promotoras Genéticas , RNA de Plantas/genética , Estresse Fisiológico
16.
Plant Cell Rep ; 28(11): 1623-32, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19690865

RESUMO

Phytocystatins are cysteine proteinase inhibitors in plants that are implicated in the endogenous regulation of protein turnover and defense mechanisms against insects and pathogens. A cDNA encoding a phytocystatin called AtCYS6 (Arabidopsis thaliana phytocystatin6) has been isolated. We show that AtCYS6 is highly expressed in dry seeds and seedlings and that it also accumulates in flowers. The persistence of AtCYS6 protein expression in seedlings was promoted by abscisic acid (ABA), a seed germination and post-germination inhibitory phytohormone. This finding was made in transgenic plants bearing an AtCYS6 promoter-beta-glucuronidase (GUS) reporter construct, where we found that expression from the AtCYS6 promoter persisted after ABA treatment but was reduced under control conditions and by gibberellin(4+7) (GA(4+7)) treatment during the germination and post-germinative periods. In addition, constitutive over-expression of AtCYS6 retarded germination and seedling growth, whereas these were enhanced in an AtCYS6 knock-out mutant (cys6-2). Additionally, cysteine proteinase activities stored in seeds were inhibited by AtCYS6 in transgenic Arabidopsis. From these data, we propose that AtCYS6 expression is enhanced by the germination inhibitory phytohormone ABA and that it participates in the control of germination rate and seedling growth by inhibiting the activity of stored cysteine proteinases.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Cistatinas/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cistatinas/genética , Regulação da Expressão Gênica de Plantas , Germinação , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
17.
Nucleic Acids Res ; 35(11): 3612-23, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17485478

RESUMO

Calmodulin (CaM) is involved in defense responses in plants. In soybean (Glycine max), transcription of calmodulin isoform 4 (GmCaM4) is rapidly induced within 30 min after pathogen stimulation, but regulation of the GmCaM4 gene in response to pathogen is poorly understood. Here, we used the yeast one-hybrid system to isolate two cDNA clones encoding proteins that bind to a 30-nt A/T-rich sequence in the GmCaM4 promoter, a region that contains two repeats of a conserved homeodomain binding site, ATTA. The two proteins, GmZF-HD1 and GmZF-HD2, belong to the zinc finger homeodomain (ZF-HD) transcription factor family. Domain deletion analysis showed that a homeodomain motif can bind to the 30-nt GmCaM4 promoter sequence, whereas the two zinc finger domains cannot. Critically, the formation of super-shifted complexes by an anti-GmZF-HD1 antibody incubated with nuclear extracts from pathogen-treated cells suggests that the interaction between GmZF-HD1 and two homeodomain binding site repeats is regulated by pathogen stimulation. Finally, a transient expression assay with Arabidopsis protoplasts confirmed that GmZF-HD1 can activate the expression of GmCaM4 by specifically interacting with the two repeats. These results suggest that the GmZF-HD1 and -2 proteins function as ZF-HD transcription factors to activate GmCaM4 gene expression in response to pathogen.


Assuntos
Calmodulina/genética , Glycine max/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Sequência de Aminoácidos , Sítios de Ligação , DNA Complementar/química , DNA Complementar/isolamento & purificação , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alinhamento de Sequência , Glycine max/metabolismo , Glycine max/microbiologia , Sequências de Repetição em Tandem , Ativação Transcricional , Dedos de Zinco
18.
Mol Cells ; 25(4): 559-65, 2008 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-18587275

RESUMO

Members of the TGA family of basic domain/leucine zipper transcription factors regulate defense genes through physical interaction with NON-EXPRESSOR OF PR1 (NPR1). Of the seven TGA family members, TGA4/octopine synthase (ocs)-element-binding factor 4 (OBF4) is the least understood. Here we present evidence for a novel function of OBF4 as a regulator of flowering. We identified CONSTANS (CO), a positive regulator of floral induction, as an OBF4-interacting protein, in a yeast two-hybrid library screen. OBF4 interacts with the B-box region of CO. The abundance of OBF4 mRNA cycles with a 24 h rhythm under both long-day (LD) and short-day (SD) conditions, with significantly higher levels during the night than during the day. Electrophoretic mobility shift assays revealed that OBF4 binds to the promoter of the FLOWERING LOCUS T (FT) gene, a direct target of CO. We also found that, like CO and FT, an OBF4:GUS construct was prominently expressed in the vascular tissues of leaf, indicating that OBF4 can regulate FT expression through the formation of a protein complex with CO. Taken together, our results suggest that OBF4 may act as a link between defense responses and flowering.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Flores/genética , Estruturas Vegetais/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Fatores de Transcrição de Zíper de Leucina Básica/genética , Ritmo Circadiano , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Especificidade de Órgãos , Estruturas Vegetais/crescimento & desenvolvimento , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Técnicas do Sistema de Duplo-Híbrido
19.
Mol Cells ; 23(2): 161-9, 2007 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-17464192

RESUMO

We identified two alternatively spliced variants of the peroxisomal targeting signal 1 (PTS1) receptor protein Pex5ps in monocot (rice, wheat, and barley) but not in dicot (Arabidopsis and tobacco) plants. We characterized the molecular and functional differences between the rice (Oryza sativa) Pex5 splicing variants OsPex5pL and OsPex5pS. There is only a single-copy of OsPEX5 in the rice genome and RT-PCR analysis points to alternative splicing of the transcripts. Putative light-responsive cis-elements were identified in the 5' region flanking OsPEX5L and Northern blot analysis demonstrated that this region affected light-dependent expression of OsPEX5 transcription. Using the pex5-deficient yeast mutant Scpex5, we showed that OsPex5pL and OsPex5pS are able to restore translocation of a model PTS1 protein (GFP-SKL) into peroxisomes. OsPex5pL and OsPex5pS formed homo-complexes via specific interaction domains, and interacted with each other and OsPex14p to form hetero-complexes. Although overexpression of OsPex5pL in the Arabidopsis pex5 mutant (Atpex5) rescued the mutant phenotype, overexpression of OsPex5pS only resulted in partial recovery.


Assuntos
Processamento Alternativo , Oryza/metabolismo , Peroxissomos/metabolismo , Proteínas de Plantas/metabolismo , Região 5'-Flanqueadora/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Mutação , Oryza/genética , Receptor 1 de Sinal de Orientação para Peroxissomos , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Triticum/genética , Triticum/metabolismo
20.
Mol Cells ; 40(8): 577-586, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28756655

RESUMO

Phytocystatins (PhyCYSs) are plant-specific proteinaceous inhibitors that are implicated in protein turnover and stress responses. Here, we characterized a PhyCYS from Arabidopsis thaliana, which was designated AtCYS5. RT-qPCR analysis showed that the expression of AtCYS5 in germinating seeds was induced by heat stress (HS) and exogenous abscisic acid (ABA) treatment. Analysis of the expression of the ß-glucuronidase reporter gene under the control of the AtCYS5 promoter showed that AtCYS5 expression during seed germination was induced by HS and ABA. Constitutive overexpression of AtCYS5 driven by the cauliflower mosaic virus 35S promoter led to enhanced HS tolerance in transgenic Arabidopsis, which was characterized by higher fresh weight and root length compared to wild-type (WT) and knockout (cys5) plants grown under HS conditions. The HS tolerance of At-CYS5-overexpressing transgenic plants was associated with increased insensitivity to exogenous ABA during both seed germination and post-germination compared to WT and cys5. Although no HS elements were identified in the 5'-flanking region of AtCYS5, canonical ABA-responsive elements (ABREs) were detected. AtCYS5 was upregulated in ABA-treated protoplasts transiently co-expressing this gene and genes encoding bZIP ABRE-binding factors (ABFs and AREB3). In the absence of ABA, ABF1 and ABF3 directly bound to the ABREs in the AtCYS5 promoter, which activated the transcription of this gene in the presence of ABA. These results suggest that an ABA-dependent pathway plays a positive role in the HS-responsive expression of AtCYS5 during seed germination and post-germination growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Germinação , Resposta ao Choque Térmico , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Germinação/genética , Resposta ao Choque Térmico/efeitos dos fármacos , Resposta ao Choque Térmico/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos de Resposta/genética , Plântula/efeitos dos fármacos , Plântula/genética , Sementes/efeitos dos fármacos , Sementes/genética , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA