RESUMO
We report a search result for a light sterile neutrino oscillation with roughly 2200 live days of data in the RENO experiment. The search is performed by electron antineutrino (ν[over ¯]_{e}) disappearance taking place between six 2.8 GW_{th} reactors and two identical detectors located at 294 m (near) and 1383 m (far) from the center of the reactor array. A spectral comparison between near and far detectors can explore reactor ν[over ¯]_{e} oscillations to a light sterile neutrino. An observed spectral difference is found to be consistent with that of the three-flavor oscillation model. This yields limits on sin^{2}2θ_{14} in the 10^{-4}â²|Δm_{41}^{2}|â²0.5 eV^{2} region, free from reactor ν[over ¯]_{e} flux and spectrum uncertainties. The RENO result provides the most stringent limits on sterile neutrino mixing at |Δm_{41}^{2}|â²0.002 eV^{2} using the ν[over ¯]_{e} disappearance channel.
RESUMO
We report a fuel-dependent reactor electron antineutrino (ν[over ¯]_{e}) yield using six 2.8 GW_{th} reactors in the Hanbit nuclear power plant complex, Yonggwang, Korea. The analysis uses 850 666 ν[over ¯]_{e} candidate events with a background fraction of 2.0% acquired through inverse beta decay (IBD) interactions in the near detector for 1807.9 live days from August 2011 to February 2018. Based on multiple fuel cycles, we observe a fuel ^{235}U dependent variation of measured IBD yields with a slope of (1.51±0.23)×10^{-43} cm^{2}/fission and measure a total average IBD yield of (5.84±0.13)×10^{-43} cm^{2}/fission. The hypothesis of no fuel-dependent IBD yield is ruled out at 6.6σ. The observed IBD yield variation over ^{235}U isotope fraction does not show significant deviation from the Huber-Mueller (HM) prediction at 1.3 σ. The measured fuel-dependent variation determines IBD yields of (6.15±0.19)×10^{-43} and (4.18±0.26)×10^{-43} cm^{2}/fission for two dominant fuel isotopes ^{235}U and ^{239}Pu, respectively. The measured IBD yield per ^{235}U fission shows the largest deficit relative to the HM prediction. Reevaluation of the ^{235}U IBD yield per fission may mostly solve the reactor antineutrino anomaly (RAA) while ^{239}Pu is not completely ruled out as a possible contributor to the anomaly. We also report a 2.9 σ correlation between the fractional change of the 5 MeV excess and the reactor fuel isotope fraction of ^{235}U.
RESUMO
The RENO experiment reports more precisely measured values of θ_{13} and |Δm_{ee}^{2}| using â¼2200 live days of data. The amplitude and frequency of reactor electron antineutrino (ν[over ¯]_{e}) oscillation are measured by comparing the prompt signal spectra obtained from two identical near and far detectors. In the period between August 2011 and February 2018, the far (near) detector observed 103 212 (850 666) ν[over ¯]_{e} candidate events with a background fraction of 4.8% (2.0%). A clear energy and baseline dependent disappearance of reactor ν[over ¯]_{e} is observed in the deficit of the measured number of ν[over ¯]_{e}. Based on the measured far-to-near ratio of prompt spectra, we obtain sin^{2}2θ_{13}=0.0896±0.0048(stat)±0.0047(syst) and |Δm_{ee}^{2}|=[2.68±0.12(stat)±0.07(syst)]×10^{-3} eV^{2}.
RESUMO
The RENO experiment has analyzed about 500 live days of data to observe an energy dependent disappearance of reactor ν[over ¯]_{e} by comparing their prompt signal spectra measured in two identical near and far detectors. In the period between August of 2011 and January of 2013, the far (near) detector observed 31 541 (290 775) electron antineutrino candidate events with a background fraction of 4.9% (2.8%). The measured prompt spectra show an excess of reactor ν[over ¯]_{e} around 5 MeV relative to the prediction from a most commonly used model. A clear energy and baseline dependent disappearance of reactor ν[over ¯]_{e} is observed in the deficit of the observed number of ν[over ¯]_{e}. Based on the measured far-to-near ratio of prompt spectra, we obtain sin^{2}2θ_{13}=0.082±0.009(stat)±0.006(syst) and |Δm_{ee}^{2}|=[2.62_{-0.23}^{+0.21}(stat)_{-0.13}^{+0.12}(syst)]×10^{-3} eV^{2}.
RESUMO
Super-Kamiokande (SK) can search for weakly interacting massive particles (WIMPs) by detecting neutrinos produced from WIMP annihilations occurring inside the Sun. In this analysis, we include neutrino events with interaction vertices in the detector in addition to upward-going muons produced in the surrounding rock. Compared to the previous result, which used the upward-going muons only, the signal acceptances for light (few-GeV/c^{2}-200-GeV/c^{2}) WIMPs are significantly increased. We fit 3903 days of SK data to search for the contribution of neutrinos from WIMP annihilation in the Sun. We found no significant excess over expected atmospheric-neutrino background and the result is interpreted in terms of upper limits on WIMP-nucleon elastic scattering cross sections under different assumptions about the annihilation channel. We set the current best limits on the spin-dependent WIMP-proton cross section for WIMP masses below 200 GeV/c^{2} (at 10 GeV/c^{2}, 1.49×10^{-39} cm^{2} for χχâbb[over ¯] and 1.31×10^{-40} cm^{2} for χχâτ^{+}τ^{-} annihilation channels), also ruling out some fraction of WIMP candidates with spin-independent coupling in the few-GeV/c^{2} mass range.
RESUMO
We report an indication that the elastic scattering rate of solar B8 neutrinos with electrons in the Super-Kamiokande detector is larger when the neutrinos pass through Earth during nighttime. We determine the day-night asymmetry, defined as the difference of the average day rate and average night rate divided by the average of those two rates, to be [-3.2 ± 1.1(stat) ± 0.5(syst)]%, which deviates from zero by 2.7 σ. Since the elastic scattering process is mostly sensitive to electron-flavored solar neutrinos, a nonzero day-night asymmetry implies that the flavor oscillations of solar neutrinos are affected by the presence of matter within the neutrinos' flight path. Super-Kamiokande's day-night asymmetry is consistent with neutrino oscillations for 4 × 10(-5) eV(2) ≤ Δm 2(21) ≤ 7 × 10(-5) eV(2) and large mixing values of θ12, at the 68% C.L.
RESUMO
The RENO experiment has observed the disappearance of reactor electron antineutrinos, consistent with neutrino oscillations, with a significance of 4.9 standard deviations. Antineutrinos from six 2.8 GW(th) reactors at the Yonggwang Nuclear Power Plant in Korea, are detected by two identical detectors located at 294 and 1383 m, respectively, from the reactor array center. In the 229 d data-taking period between 11 August 2011 and 26 March 2012, the far (near) detector observed 17102 (154088) electron antineutrino candidate events with a background fraction of 5.5% (2.7%). The ratio of observed to expected numbers of antineutrinos in the far detector is 0.920±0.009(stat)±0.014(syst). From this deficit, we determine sin(2)2θ(13)=0.113±0.013(stat)±0.019(syst) based on a rate-only analysis.
RESUMO
Dermal and plexiform neurofibromas are peripheral nerve sheath tumors that arise frequently in neurofibromatosis type 1. The goal of the present study was to examine the tumorigenic properties of neurofibromin-deficient human Schwann cells (SCs) that were found to represent a subset of SCs present in approximately half of the total neurofibromas examined. Highly enriched SC cultures were established from 10 dermal and eight plexiform neurofibromas by selective subculture using glial growth factor-2 and laminin. These cultures had low tumorigenic potential in classical in vitro assays yet several unique preneoplastic properties were frequently observed, including delayed senescence, a lack of density-limited growth, and a strong propensity to spontaneously form proliferative cell aggregates rich in extracellular matrix. Western blot analysis failed to detect full-length neurofibromin in any of the neurofibroma SC cultures, indicating that neurofibromin-deficient SCs had a substantial growth advantage. Immunohistochemical staining of the originating tumors showed the majority were comprised principally of neurofibromin-negative SCs, whereas the remainder contained both neurofibromin-negative and neurofibromin-positive SCs. Lastly, engraftment of neurofibromin-deficient SC cultures into the peripheral nerves of scid mice consistently produced persistent neurofibroma-like tumors with diffuse and often extensive intraneural growth. These findings indicate that neurofibromin-deficient SCs are involved in neurofibroma formation and, by selective subculture, provide a resource for the development of an in vivo model to further examine the role of these mutant SCs in neurofibroma histogenesis.
Assuntos
Proteínas do Tecido Nervoso/biossíntese , Neurofibroma/metabolismo , Células de Schwann/química , Adolescente , Adulto , Idoso , Animais , Western Blotting , Divisão Celular , Células Cultivadas , Criança , Pré-Escolar , Humanos , Imuno-Histoquímica , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Transplante de Neoplasias , Proteínas do Tecido Nervoso/deficiência , Neurofibroma/patologia , Neurofibromina 1 , Células de Schwann/patologia , Transplante Heterólogo , Células Tumorais Cultivadas , Ensaio Tumoral de Célula-TroncoRESUMO
Dermal and plexiform neurofibromas are benign peripheral nerve sheath tumors that arise in neurofibromatosis type 1 (NF1). NF1 patients also have an increased risk of malignant peripheral nerve sheath tumors (MPNSTs), thought to arise in a subset of plexiform neurofibromas. Plexiform neurofibroma pathogenesis is poorly understood, despite the serious clinical problem posed by these tumors. The Schwann cell is hypothesized to be the cell type initially mutated and clonally expanded in plexiform neurofibromas. To test this hypothesis and search for genetic alterations involved in tumorigenesis, we established Schwann cell cultures from plexiform and dermal neurofibromas. Cytogenetic abnormalities were identified in 4/6 plexiform cultures (including one from a plexiform with a sarcomatous component) and 0/7 dermal neurofibroma Schwann cell cultures. There were no consistent chromosomal regions involved in the abnormal karyotypes, suggesting that plexiform tumors are heterogeneous and may bear a variety of primary and/or secondary genetic changes. This is the first study to show successful culturing of genetically abnormal Schwann cell lineages from plexiform neurofibromas. Thus, we present the strongest evidence yet to support the theory that the Schwann cell is the central component in the development of plexiform neurofibromas. This is a key finding for NF1 research, which will lead to further studies of the genetic and biochemical pathogenesis of these Schwann cell tumors. Genes Chromosomes Cancer 27:117-123, 2000.
Assuntos
Proteínas do Tecido Nervoso , Neurofibromatose 1/genética , Células de Schwann/citologia , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Aberrações Cromossômicas , Análise Citogenética , Humanos , Imuno-Histoquímica , Cariotipagem , Neuregulina-1/farmacologia , Neurofibromatose 1/metabolismo , Neurofibromatose 1/patologia , Proteínas Recombinantes/farmacologia , Proteínas S100/análise , Células de Schwann/química , Células de Schwann/efeitos dos fármacosRESUMO
We present a search for electron neutrino appearance from accelerator-produced muon neutrinos in the K2K long-baseline neutrino experiment. One candidate event is found in the data corresponding to an exposure of 4.8 x 10(19) protons on target. The expected background in the absence of neutrino oscillations is estimated to be 2.4+/-0.6 events and is dominated by misidentification of events from neutral current pi(0) production. We exclude the nu(micro) to nu(e) oscillations at 90% C.L. for the effective mixing angle in the 2-flavor approximation of sin((2)2theta(microe)( approximately 1/2sin((2)2theta(13))>0.15 at Deltam(2)(microe)=2.8 x 10(-3) eV(2), the best-fit value of the nu(micro) disappearance analysis in K2K. The most stringent limit of sin((2)2theta(microe)<0.09 is obtained at Deltam(2)(microe)=6 x 10(-3) eV(2).
RESUMO
A search for a nonzero neutrino magnetic moment has been conducted using 1496 live days of solar neutrino data from Super-Kamiokande-I. Specifically, we searched for distortions to the energy spectrum of recoil electrons arising from magnetic scattering due to a nonzero neutrino magnetic moment. In the absence of a clear signal, we found micro(nu)=(3.6x10(-10))micro(B) at 90% C.L. by fitting to the Super-Kamiokande day-night spectra. The fitting took into account the effect of neutrino oscillation on the shapes of energy spectra. With additional information from other solar neutrino and KamLAND experiments constraining the oscillation region, a limit of micro(nu)=(1.1x10(-10))micro(B) at 90% C.L. was obtained.
RESUMO
The K2K experiment observes indications of neutrino oscillation: a reduction of nu(mu) flux together with a distortion of the energy spectrum. Fifty-six beam neutrino events are observed in Super-Kamiokande (SK), 250 km from the neutrino production point, with an expectation of 80.1(+6.2)(-5.4). Twenty-nine one ring mu-like events are used to reconstruct the neutrino energy spectrum, which is better matched to the expected spectrum with neutrino oscillation than without. The probability that the observed flux at SK is explained by statistical fluctuation without neutrino oscillation is less than 1%.