Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cells ; 42(5): 416-429, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38381602

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, accounting for 31% of all deaths globally. Myocardial ischemia-reperfusion injury (IRI), a common complication of CVDs, is a major cause of mortality and morbidity. Studies have shown efficacious use of mesenchymal stem cells-derived small extracellular vesicles (MSCs-EVs) to mitigate IRI in animals, but few research has been done on human-related models. In this study, human embryonic stem cell-derived chambered cardiac organoid (CCO) was used as a model system to study the effects of MSC-EVs on myocardial IRI. The results revealed that MSC-EVs treatment reduced apoptosis and improved contraction resumption of the CCOs. Metabolomics analysis showed that this effect could be attributed to EVs' ability to prevent the accumulation of unsaturated very long-chain fatty acids (VLCFAs). This was corroborated when inhibition of fatty acid synthase, which was reported to reduce VLCFAs, produced a similar protective effect to EVs. Overall, this study uncovered the mechanistic role of MSC-EVs in mitigating IRI that involves preventing the accumulation of unsaturated VLCFA, decreasing cell death, and improving contraction resumption in CCOs.


Assuntos
Apoptose , Vesículas Extracelulares , Células-Tronco Mesenquimais , Organoides , Humanos , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Organoides/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Ácidos Graxos/metabolismo , Cardiotônicos/metabolismo , Cardiotônicos/farmacologia
2.
J Biomed Sci ; 31(1): 9, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233833

RESUMO

Extracellular vesicles (EVs) are tiny, lipid membrane-bound structures that are released by most cells. They play a vital role in facilitating intercellular communication by delivering bioactive cargoes to recipient cells and triggering cellular as well as biological responses. EVs have enormous potential for therapeutic applications as native or engineered exosomes. Native EVs are naturally released by cells without undergoing any modifications to either the exosomes or the cells that secrete them. In contrast, engineered EVs have been deliberately modified post-secretion or through genetic engineering of the secreting cells to alter their composition. Here we propose that engineered EVs displaying pathogen proteins could serve as promising alternatives to lipid nanoparticle (LNP)-mRNA vaccines. By leveraging their unique characteristics, these engineered EVs have the potential to overcome certain limitations associated with LNP-mRNA vaccines.


Assuntos
Exossomos , Vesículas Extracelulares , Células-Tronco Mesenquimais , Vacinas , Vacinas de mRNA , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Exossomos/genética , Vacinas/genética
3.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612553

RESUMO

Mesenchymal stem/stromal cells (MSCs) are an extensively studied cell type in clinical trials due to their easy availability, substantial ex vivo proliferative capacity, and therapeutic efficacy in numerous pre-clinical animal models of disease. The prevailing understanding suggests that their therapeutic impact is mediated by the secretion of exosomes. Notably, MSC exosomes present several advantages over MSCs as therapeutic agents, due to their non-living nature and smaller size. However, despite their promising therapeutic potential, the clinical translation of MSC exosomes is hindered by an incomplete understanding of their biodistribution after administration. A primary obstacle to this lies in the lack of robust labels that are highly sensitive, capable of directly and easily tagging exosomes with minimal non-specific labeling artifacts, and sensitive traceability with minimal background noise. One potential candidate to address this issue is radioactive iodine. Protocols for iodinating exosomes and tracking radioactive iodine in live imaging are well-established, and their application in determining the biodistribution of exosomes has been reported. Nevertheless, the effects of iodination on the structural or functional activities of exosomes have never been thoroughly examined. In this study, we investigate these effects and report that these iodination methods abrogate CD73 enzymatic activity on MSC exosomes. Consequently, the biodistribution of iodinated exosomes may reflect the biodistribution of denatured exosomes rather than functionally intact ones.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Neoplasias da Glândula Tireoide , Animais , Radioisótopos do Iodo , Distribuição Tecidual
4.
Cytotherapy ; 25(8): 815-820, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37115163

RESUMO

The most clinically trialed cells, mesenchymal stromal cells (MSCs), are now known to mainly exert their therapeutic activity through paracrine secretions, which include exosomes. To mitigate potential regulatory concerns on the scalability and reproducibility in the preparations of MSC exosomes, MSC exosomes were produced using a highly characterized MYC-immortalized monoclonal cell line. These cells do not form tumors in athymic nude mice or exhibit anchorage-independent growth, and their exosomes do not carry MYC protein or promote tumor growth. Unlike intra-peritoneal injections, topical applications of MSC exosomes in a mouse model of IMQ-induced psoriasis alleviate interleukin (IL)-17, IL-23 and terminal complement complex, C5b9 in psoriatic skin. When applied on human skin explants, fluorescence from covalently labeled fluorescent MSC exosomes permeated and persisted in the stratum corneum for about 24 hours with negligible exit out of the stratum corneum into the underlying epidermis. As psoriatic stratum corneums are uniquely characterized by activated complements and Munro microabscesses, we postulated that topically applied exosomes permeate the psoriatic stratum corneum to inhibit C5b9 complement complex through CD59, and this inhibition attenuated neutrophil secretion of IL-17. Consistent with this, we demonstrated that assembly of C5b9 on purified human neutrophils induced IL-17 secretion and this induction was abrogated by MSC exosomes, which was in turn abrogated by a neutralizing anti-CD 59 antibody. We thus established the mechanism of action for the alleviation of psoriatic IL-17 by topically applied exosomes.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Psoríase , Animais , Camundongos , Humanos , Exossomos/metabolismo , Interleucina-17 , Camundongos Nus , Reprodutibilidade dos Testes , Psoríase/terapia , Células-Tronco Mesenquimais/metabolismo
5.
Cytotherapy ; 25(8): 810-814, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36931996

RESUMO

The International Society for Cell & Gene Therapy Scientific Signature Series event "Therapeutic Advances With Native and Engineered Human EVs" took place as part of the International Society for Cell & Gene Therapy 2022 Annual Meeting, held from May 4 to 7, 2022, in San Francisco, California, USA. This was the first signature series event on extracellular vesicles (EVs) and a timely reflection of the growing interest in EVs, including both native and engineered human EVs, for therapeutic applications. The event successfully gathered academic and industrial key opinion leaders to discuss the current state of the art in developing and understanding native and engineered EVs and applying our knowledge toward advancing EV therapeutics. Latest advancements in understanding the mechanisms by which native and engineered EVs exert their therapeutic effects against different diseases in animal models were presented, with some diseases such as psoriasis and osteoarthritis already reaching clinical testing of EVs. The discussion also covered various aspects relevant to advancing the clinical translation of EV therapies, including EV preparation, manufacturing, consistency, site(s) of action, route(s) of administration, and luminal cargo delivery of RNA and other compounds.


Assuntos
Vesículas Extracelulares , Animais , Humanos , Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética
6.
Int J Mol Sci ; 24(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37175803

RESUMO

Mesenchymal stem/stromal cell small extracellular vesicles (MSC-sEVs) have shown promise in treating a wide range of animal models of various human diseases, which has led to their consideration for clinical translation. However, the possibility of contraindication for MSC-sEV use is an important consideration. One concern is that MSC-sEVs have been shown to induce M2 macrophage polarization, which is known to be pro-fibrotic, potentially indicating contraindication in fibrotic diseases such as liver fibrosis. Despite this concern, previous studies have shown that MSC-sEVs alleviate high-fat diet (HFD)-induced non-alcoholic steatohepatitis (NASH). To assess whether the pro-fibrotic M2 macrophage polarization induced by MSC-sEVs could worsen liver fibrosis, we first verified that our MSC-sEV preparations could promote M2 polarization in vitro prior to their administration in a mouse model of NASH. Our results showed that treatment with MSC-sEVs reduced or had comparable NAFLD Activity Scores and liver fibrosis compared to vehicle- and Telmisartan-treated animals, respectively. Although CD163+ M2 macrophages were increased in the liver, and serum IL-6 levels were reduced in MSC-sEV treated animals, our data suggests that MSC-sEV treatment was efficacious in reducing liver fibrosis in a mouse model of NASH despite an increase in pro-fibrotic M2 macrophage polarization.


Assuntos
Vesículas Extracelulares , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/terapia , Cirrose Hepática/terapia , Macrófagos , Modelos Animais de Doenças
7.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108619

RESUMO

Corneal scarring is a leading cause of worldwide blindness. Human mesenchymal stem cells (MSC) have been reported to promote corneal wound healing through secreted exosomes. This study investigated the wound healing and immunomodulatory effects of MSC-derived exosomes (MSC-exo) in corneal injury through an established rat model of corneal scarring. After induction of corneal scarring by irregular phototherapeutic keratectomy (irrPTK), MSC exosome preparations (MSC-exo) or PBS vehicle as controls were applied to the injured rat corneas for five days. The animals were assessed for corneal clarity using a validated slit-lamp haze grading score. Stromal haze intensity was quantified using in-vivo confocal microscopy imaging. Corneal vascularization, fibrosis, variations in macrophage phenotypes, and inflammatory cytokines were evaluated using immunohistochemistry techniques and enzyme-linked immunosorbent assays (ELISA) of the excised corneas. Compared to the PBS control group, MSC-exo treatment group had faster epithelial wound closure (0.041), lower corneal haze score (p = 0.002), and reduced haze intensity (p = 0.004) throughout the follow-up period. Attenuation of corneal vascularisation based on CD31 and LYVE-1 staining and reduced fibrosis as measured by fibronectin and collagen 3A1 staining was also observed in the MSC-exo group. MSC-exo treated corneas also displayed a regenerative immune phenotype characterized by a higher infiltration of CD163+, CD206+ M2 macrophages over CD80+, CD86+ M1 macrophages (p = 0.023), reduced levels of pro-inflammatory IL-1ß, IL-8, and TNF-α, and increased levels of anti-inflammatory IL-10. In conclusion, topical MSC-exo could alleviate corneal insults by promoting wound closure and reducing scar development, possibly through anti-angiogenesis and immunomodulation towards a regenerative and anti-inflammatory phenotype.


Assuntos
Lesões da Córnea , Exossomos , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Cicatriz , Lesões da Córnea/terapia , Fibrose , Imunomodulação
8.
Cytotherapy ; 24(7): 711-719, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35177337

RESUMO

Complements and neutrophils are two key players of the innate immune system that are widely implicated as drivers of severe COVID-19 pathogenesis, as evident by the direct correlation of respiratory failure and mortality with elevated levels of terminal complement complex C5b-9 and neutrophils. In this study, we identified a feed-forward loop between complements and neutrophils that could amplify and perpetuate the cytokine storm seen in severe SARS-CoV-2-infected patients. We observed for the first time that the terminal complement activation complex C5b-9 directly triggered neutrophil extracellular trap (NET) release and interleukin (IL)-17 production by neutrophils. This is also the first report that the production of NETs and IL-17 induced by C5b-9 assembly on neutrophils could be abrogated by mesenchymal stem cell (MSC) exosomes. Neutralizing anti-CD59 antibodies abolished this abrogation. Based on our findings, we hypothesize that MSC exosomes could alleviate the immune dysregulation in acute respiratory failure, such as that observed in severe COVID-19 patients, by inhibiting complement activation through exosomal CD59, thereby disrupting the feed-forward loop between complements and neutrophils to inhibit the amplification and perpetuation of inflammation during SARS-CoV-2 infection.


Assuntos
COVID-19 , Exossomos , Células-Tronco Mesenquimais , COVID-19/terapia , Complexo de Ataque à Membrana do Sistema Complemento , Humanos , Neutrófilos , SARS-CoV-2
9.
Cytotherapy ; 23(5): 373-380, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33934807

RESUMO

Mesenchymal stromal/stem cells (MSCs) have been widely tested against many diseases, with more than 1000 registered clinical trials worldwide. Despite many setbacks, MSCs have been approved for the treatment of graft-versus-host disease and Crohn disease. However, it is increasingly clear that MSCs exert their therapeutic functions in a paracrine manner through the secretion of small extracellular vesicles (sEVs) of 50-200 nm in diameter. Unlike living cells that can persist long-term, sEVs are non-living and non-replicative and have a transient presence in the body. Their small size also renders sEV preparations highly amenable to sterilization by filtration. Together, acellular MSC-sEV preparations are potentially safer and easier to translate into the clinic than cellular MSC products. Nevertheless, there are inherent challenges in the development of MSC-sEV drug products. MSC-sEVs are products of living cells, and living cells are sensitive to changes in the external microenvironment. Consequently, quality control metrics to measure key identity and potency features of MSC-sEV preparations have to be specified during development of MSC-sEV therapeutics. The authors have previously described quantifiable assays to define the identity of MSC-sEVs. Here the authors discuss requirements for prospective potency assays to predict the therapeutic effectiveness of the drug substance in accordance with International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines. Although potency assays should ideally reflect the mechanism of action (MoA), this is challenging because the MoA for the reported efficacy of MSC-sEV preparations against multiple diseases of diverse underlying pathology is likely to be complex and different for each disease and difficult to fully elucidate. Nevertheless, robust potency assays could be developed by identifying the EV attribute most relevant to the intended biological activity in EV-mediated therapy and quantifying the EV attribute. Specifically, the authors highlight challenges and mitigation measures to enhance the manufacture of consistent and reproducibly potent sEV preparations, to identify and select the appropriate EV attribute for potency assays despite a complex "work-in-progress" MoA and to develop assays likely to be compliant with regulatory guidance for assay validation.


Assuntos
Vesículas Extracelulares , Doença Enxerto-Hospedeiro , Células-Tronco Mesenquimais , Humanos , Estudos Prospectivos
10.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450859

RESUMO

Severe psoriasis, a chronic inflammatory skin disease is increasingly being effectively managed by targeted immunotherapy but long-term immunotherapy poses health risk and loss of response. Therefore, there is a need for alternative therapy strategies. Mesenchymal stem/stromal cell (MSC) exosomes are widely known for their potent immunomodulatory properties. Here we investigated if topically applied MSC exosomes could alleviate psoriasis-associated inflammation. Topically applied fluorescent exosomes on human skin explants were confined primarily to the stratum corneum with <1% input fluorescence exiting the explant over a 24-h period. Nevertheless, topically applied MSC exosomes in a mouse model of imiquimod (IMQ) psoriasis significantly reduced IL-17 and terminal complement activation complex C5b-9 in the mouse skin. MSC exosomes were previously shown to inhibit complement activation, specifically C5b-9 complex formation through CD59. Infiltration of neutrophils into the stratum corneum is characteristic of psoriasis and neutrophils are a major cellular source of IL-17 in psoriasis through the release of neutrophil extracellular traps (NETs). We propose that topically applied MSC exosomes inhibit complement activation in the stratum corneum and this alleviates IL-17 release by NETS from neutrophils that accumulate in and beneath the stratum corneum.


Assuntos
Exossomos/metabolismo , Imiquimode/efeitos adversos , Células-Tronco Mesenquimais/metabolismo , Psoríase/etiologia , Psoríase/patologia , Administração Tópica , Animais , Biomarcadores , Biópsia , Modelos Animais de Doenças , Camundongos , Permeabilidade , Fenótipo , Psoríase/terapia , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Absorção Cutânea
11.
Cytotherapy ; 22(9): 482-485, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32425691

RESUMO

STATEMENT: The International Society for Cellular and Gene Therapies (ISCT) and the International Society for Extracellular Vesicles (ISEV) recognize the potential of extracellular vesicles (EVs, including exosomes) from mesenchymal stromal cells (MSCs) and possibly other cell sources as treatments for COVID-19. Research and trials in this area are encouraged. However, ISEV and ISCT do not currently endorse the use of EVs or exosomes for any purpose in COVID-19, including but not limited to reducing cytokine storm, exerting regenerative effects or delivering drugs, pending the generation of appropriate manufacturing and quality control provisions, pre-clinical safety and efficacy data, rational clinical trial design and proper regulatory oversight.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais/citologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Exossomos/transplante , Vesículas Extracelulares/transplante , Humanos , Sociedades Científicas , Tratamento Farmacológico da COVID-19
12.
Arthroscopy ; 36(8): 2215-2228.e2, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32302651

RESUMO

PURPOSE: To compare the efficacy of mesenchymal stem cell (MSC) exosomes with hyaluronic acid (HA) against HA alone for functional cartilage regeneration in a rabbit osteochondral defect model. METHODS: Critical-size osteochondral defects (4.5-mm diameter and 1.5-mm depth) were created on the trochlear grooves in the knees of 18 rabbits and were randomly allocated to 2 treatment groups: (1) exosomes and HA combination and (2) HA alone. Three 1-mL injections of either exosomes and HA or HA alone were administered intra-articularly immediately after surgery and thereafter at 7 and 14 days after surgery. At 6 and 12 weeks, gross evaluation, histologic and immunohistochemical analysis, and scoring were performed. The functional biomechanical competence of the repaired cartilage also was evaluated. RESULTS: Compared with defects treated with HA, defects treated with exosomes and HA showed significant improvements in macroscopic scores (P = .032; P = .001) and histologic scores (P = .005; P < .001) at 6 and 12 weeks, respectively. Defects treated with exosomes and HA also demonstrated improvements in mechanical properties compared with HA-treated defects, with significantly greater Young's moduli (P < .05) and stiffness (P < .05) at 6 and 12 weeks. By 12 weeks, the newly-repaired tissues in defects treated with exosomes and HA composed mainly of hyaline cartilage that are mechanically and structurally superior to that of HA-treated defects and demonstrated mechanical properties that approximated that of adjacent native cartilage (P > .05). In contrast, HA-treated defects showed some repair at 6 weeks, but this was not sustained, as evidenced by significant deterioration of histologic scores (P = .002) and a plateau in mechanical properties from 6 to 12 weeks. CONCLUSIONS: This study shows that the combination of MSC exosomes and HA administered at a clinically acceptable frequency of 3 intra-articular injections can promote sustained and functional cartilage repair in a rabbit post-traumatic cartilage defect model, when compared with HA alone. CLINICAL RELEVANCE: Human MSC exosomes and HA administered in combination promote functional cartilage repair and may represent a promising cell-free therapy for cartilage repair in patients.


Assuntos
Doenças das Cartilagens/terapia , Cartilagem Articular/cirurgia , Exossomos , Ácido Hialurônico/uso terapêutico , Transplante de Células-Tronco Mesenquimais , Animais , Doenças das Cartilagens/patologia , Módulo de Elasticidade , Feminino , Humanos , Injeções Intra-Articulares , Células-Tronco Mesenquimais/citologia , Coelhos
13.
Proteomics ; 19(1-2): e1800163, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30467989

RESUMO

Small extracellular vesicles (EVs) are 50-200 nm vesicles secreted by most cells. They are considered as mediators of intercellular communication, and EVs from specific cell types, in particular mesenchymal stem/stromal cells (MSCs), offer powerful therapeutic potential, and can provide a novel therapeutic strategy. They appear promising and safe (as EVs are non-self-replicating), and eventually MSC-derived EVs (MSC-EVs) may be developed to standardized, off-the-shelf allogeneic regenerative and immunomodulatory therapeutics. Promising pre-clinical data have been achieved using MSCs from different sources as EV-producing cells. Similarly, a variety EV isolation and characterization methods have been applied. Interestingly, MSC-EVs obtained from different sources and prepared with different methods show in vitro and in vivo therapeutic effects, indicating that isolated EVs share a common potential. Here, well-characterized and controlled, publicly available proteome profiles of MSC-EVs are compared to identify a common MSC-EV protein signature that might be coupled to the MSC-EVs' common therapeutic potential. This protein signature may be helpful in developing MSC-EV quality control platforms required to confirm the identity and test for the purity of potential therapeutic MSC-EVs.


Assuntos
Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteômica/métodos , Diferenciação Celular/fisiologia , Humanos
14.
Semin Cell Dev Biol ; 67: 56-64, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27871993

RESUMO

Mesenchymal stem cell (MSC) therapies have demonstrated efficacy in cartilage repair in animal and clinical studies. The efficacy of MSC-based therapies which was previously predicated on the chondrogenic potential of MSC is increasingly attributed to the paracrine secretion, particularly exosomes. Exosomes are thought to function primarily as intercellular communication vehicles to transfer bioactive lipids, nucleic acids (mRNAs and microRNAs) and proteins between cells to elicit biological responses in recipient cells. For MSC exosomes, many of these biological responses translated to a therapeutic outcome in injured or diseased cells. Here, we review the current understanding of MSC exosomes, discuss the possible mechanisms of action in cartilage repair within the context of the widely reported immunomodulatory and regenerative potency of MSC exosomes, and provide new perspectives for development of an off-the-shelf and cell-free MSC therapy for treatment of cartilage injuries and osteoarthritis.


Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Exossomos/química , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/terapia , Animais , Cartilagem Articular/patologia , Condrócitos/patologia , Exossomos/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Comunicação Parácrina , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regeneração/genética , Medicina Regenerativa/métodos , Engenharia Tecidual
15.
J Lipid Res ; 60(2): 318-322, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30154233

RESUMO

The therapeutic efficacy of mesenchymal stromal cells (MSCs), multipotent progenitor cells, is attributed to small (50-200 nm) extracellular vesicles (EVs). The presence of a lipid membrane differentiates exosomes and EVs from other macromolecules. Analysis of this lipid membrane revealed three distinct small MSC EV subtypes, each with a differential affinity for cholera toxin B chain (CTB), annexin V (AV), and Shiga toxin B chain (ST) that bind GM1 ganglioside, phosphatidylserine, and globotriaosylceramide, respectively. Similar EV subtypes are also found in biologic fluids and are independent sources of disease biomarkers. Here, we compare and contrast these three EV subtypes. All subtypes carry ß-actin, but only CTB-binding EVs (CTB-EVs) are true exosomes, enriched with exosome proteins and derived from endosomes. No unique protein has been identified yet in AV-binding EVs (AV-EVs); ST-binding EVs (ST-EVs) carry RNA and a high level of extra domain A-containing fibronectin. Based on the CTB, AV, and ST subcellular binding sites, the origins of CTB-, AV-, and ST-EV biogenesis are the plasma membrane, cytoplasm, and nucleus, respectively. The differentiation of EV subtypes through membrane lipids underlies the importance of membrane lipids in defining EVs and implies an influence on EV biology and functions.


Assuntos
Vesículas Extracelulares/metabolismo , Lipídeos de Membrana/metabolismo , Células-Tronco Mesenquimais/citologia , Animais , Exossomos/metabolismo , Humanos
16.
Carcinogenesis ; 40(12): 1452-1461, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31436806

RESUMO

Management of locally advanced head and neck squamous cell carcinoma (HNSCC) requires a multi-prong approach comprising surgery, radiation and/or chemotherapy, yet outcomes are limited. This is largely due to a paucity of biomarkers that can predict response to specific treatment modalities. Here, we evaluated TGFß3 protein levels in extracellular vesicles (EVs) released by HNSCC cells as a predictor for response to chemoradiation therapy (CRT). To this end, specific EV-fractions were isolated from cell lines or HNSCC patient plasma, and TGFß3 protein was quantified. In patients treated with CRT, TGFß3 levels were found to be significantly higher in plasma EV-fractions or non-responders compared with responders. High levels of TGFß3 levels in Annexin V-EVs were associated with the worst progression-free survival. In vitro experiments demonstrated that TGFß3 silencing sensitized HNSCC cells to cytotoxic therapies, and this phenotype could be rescued by treatment with exogenous. In addition, specific EV-fractions shed by cisplatin-resistant cells were sufficient to transfer the resistant phenotype to sensitive cells through activation of TGFß-signaling pathway. Therefore, our data show that TGFß3 transmitted through EV plays a significant role in response to cytotoxic therapy, which can be exploited as a potential biomarker for CRT response in HNSCC patients treated with curative intent.


Assuntos
Biomarcadores Tumorais/sangue , Vesículas Extracelulares/metabolismo , Neoplasias de Cabeça e Pescoço/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Fator de Crescimento Transformador beta3/sangue , Adulto , Idoso , Quimiorradioterapia/métodos , Cisplatino/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Neoplasias de Cabeça e Pescoço/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Paclitaxel/administração & dosagem , Tolerância a Radiação/fisiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/sangue
17.
BMC Cancer ; 19(1): 373, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31014274

RESUMO

BACKGROUND: There is a paucity of plasma-based biomarkers that prospectively segregate the outcome of patients with head and neck squamous-cell carcinoma (HNSCC) treated with chemoradiation therapy (CRT). Plasma extracellular vesicles (EVs) might be an alternative source for discovery of new specific markers present in patients with HNSCC, which could help to re-direct patients to appropriate curative therapies without delay. METHODS: In order to identify new markers in plasma compartments, Cholerae toxin B chain (CTB) and Annexin V (AV) were used to isolate EVs from pooled plasma samples from patients with locally advanced HNSCC who responded (CR, n = 6) or presented incomplete response (NR, n = 6) to CRT. The crude plasma and EVs cargo were screened by antibody array. RESULTS: Of the 370 polypeptides detected, 119 proteins were specific to NR patients while 38 were exclusive of the CR subjects. The Gene Set Enrichment Analysis (GSEA) and Search Tool for the Retrieval of Interacting Genes (STRING) database analysis indicated that the content of circulating plasma EVs might have a relevant function for the tumor intercellular communication in the HNSCC patients. CONCLUSION: This study provides a list of potential markers present in plasma compartments that might contribute to the development of tools for prediction and assessment of CRT response and potentially guide therapeutic decisions in this context.


Assuntos
Biomarcadores Tumorais/sangue , Carcinoma de Células Escamosas/patologia , Quimiorradioterapia/métodos , Vesículas Extracelulares/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Adulto , Idoso , Carcinoma de Células Escamosas/sangue , Carcinoma de Células Escamosas/terapia , Ensaios Clínicos Fase II como Assunto , Vesículas Extracelulares/patologia , Feminino , Seguimentos , Neoplasias de Cabeça e Pescoço/sangue , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Análise Serial de Proteínas , Mapas de Interação de Proteínas
18.
Biochem Soc Trans ; 46(4): 843-853, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29986939

RESUMO

Mesenchymal stem cell (MSC) exosome specifically defines the 50-200 nm vesicles that are secreted into the extracellular space when multivesicular bodies in the MSC fuse with the plasma membrane. However, the exosome is just one of several 50-200 nm extracellular vesicles (EVs) known to be secreted by cells. Nevertheless, the term 'MSC exosome' is often used to describe populations of 50-200 nm EVs that are prepared from culture medium conditioned by MSCs on the basis that these populations collectively exhibited typical exosome-associated proteins such as endosomal proteins, TSG101 and Alix, and tetraspanin proteins, CD9, CD63 and CD81. They also carry a rich diverse RNA cargo. MSC exosomes are increasingly implicated as the mediator of many of the MSC-associated therapeutic potencies. They elicit therapeutic activity by delivering their cargo of potentially therapeutic proteins and RNAs to the recipient cells. The therapeutic potency of MSC exosomes is usually rationalized on the presence of a biologically relevant protein or RNA in the MSC exosome. In the present paper, we expanded this rationale beyond a physical presence to include biologically relevant concentration, biochemical functionality and the potential to elicit an appropriate timely biochemical response. Based on these, we propose that MSC exosomes most probably work through the protein rather than the RNA.


Assuntos
Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas/metabolismo , Animais , Terapia Baseada em Transplante de Células e Tecidos , Humanos , MicroRNAs/metabolismo , Transporte Proteico , RNA/metabolismo
20.
Cytotherapy ; 20(12): 1419-1426, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30352735

RESUMO

Mesenchymal stromal cell (MSC) therapies have demonstrated therapeutic efficacy in a wide-ranging array of tissue injury and disease indications. An important aspect of MSC-mediated therapeutic activities is immune modulation. Consistent with the concentration of MSC therapeutic potency in its secretion, a significant proportion of MSC immune potency resides in the small extracellular vesicles (sEVs) secreted by MSCs. These sEVs, which also include exosomes, carry a large cargo enriched in proteins with potent immunomodulatory activities. They have been reported to exert potent effects on humoral and cellular components of the immune system in vitro and in vivo, and may have the potential to support the diametrically opposite pro- and anti-inflammatory functions necessary for tissue repair and regeneration following injury. Following injury, pro-inflammatory activities are necessary to neutralize injury and remove dead or injured tissue, while anti-inflammatory activities to facilitate migration and proliferation of reparative cell types and to increase vascularization and nutrient supply are necessary to repair and regenerate new tissue. Therefore, a critical immunomodulatory requisite of MSC sEVs in tissue regeneration is the capacity to support the appropriate immune activities at the appropriate time. Here, we review how some of the immune regulatory targets of MSC sEVs could support the dynamic immunomodulatory activities during tissue repair and regeneration.


Assuntos
Exossomos/imunologia , Vesículas Extracelulares/imunologia , Células-Tronco Mesenquimais/imunologia , Regeneração/imunologia , Exossomos/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA