Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(10): e2318443121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412131

RESUMO

Electric currents have the intriguing ability to induce magnetization in nonmagnetic crystals with sufficiently low crystallographic symmetry. Some associated phenomena include the non-linear anomalous Hall effect in polar crystals and the nonreciprocal directional dichroism in chiral crystals when magnetic fields are applied. In this work, we demonstrate that the same underlying physics is also manifested in the electronic tunneling process between the surface of a nonmagnetic chiral material and a magnetized scanning probe. In the paramagnetic but chiral metallic compound Co1/3NbS2, the magnetization induced by the tunneling current is shown to become detectable by its coupling to the magnetization of the tip itself. This results in a contrast across different chiral domains, achieving atomic-scale spatial resolution of structural chirality. To support the proposed mechanism, we used first-principles theory to compute the chirality-dependent current-induced magnetization and Berry curvature in the bulk of the material. Our demonstration of this magnetochiral tunneling effect opens up an avenue for investigating atomic-scale variations in the local crystallographic symmetry and electronic structure across the structural domain boundaries of low-symmetry nonmagnetic crystals.

2.
Nano Lett ; 22(4): 1812-1817, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-34890208

RESUMO

Control of a single ionic charge state by altering the number of bound electrons has been considered as an ultimate testbed for atomic charge-induced interactions and manipulations, and such subject has been studied in artificially deposited objects on thin insulating layers. We demonstrate that an entire layer of controllable atomic charges on a periodic lattice can be obtained by cleaving metallic Co1/3NbS2, an intercalated transition metal dichalcogenide. We identified a metastable charge state of Co with a different valence and manipulated atomic charges to form a linear chain of the metastable charge state. Density functional theory investigation reveals that the charge state is stable due to a modified crystal field at the surface despite the coupling between NbS2 and Co via a1g orbitals. The idea can be generalized to other combinations of intercalants and base matrices, suggesting that they can be a new platform to explore single-atom-operational 2D electronics/spintronics.

3.
Nano Lett ; 20(7): 4801-4808, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32496066

RESUMO

It has been only recently realized that topological vortices associated with structural distortions or ordered spins are rather common in numerous materials where long-range interactions are not dominant. Incommensurate modulations that frequently occur in charge density wave (CDW) materials are often understood in terms of discommensurations with a periodic phase shift. The accumulation of a one-dimensional (1D) phase shift can result in, for example, CDW dislocations in 2H-TaSe2 with incommensurate CDW (I-CDW). Since any atomic-scale experimental investigation of CDW dislocations in 2H-TaSe2 has been lacking, we have performed the atomic-scale observation of 2H-TaSe2 with I-CDW, stabilized with Pd intercalation or strain, with scanning probe microscopy, and unveiled the existence of topological Z6 or Z4 vortices with topologically protected 2D winding movements of atomic displacement vectors. The discovery opens the ubiquitous nature of topological vortex domains and a new avenue to explore new facets of various incommensurate modulations or discommensurations.

4.
Nat Aging ; 2(8): 726-741, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-37118130

RESUMO

The aging brain exhibits a region-specific reduction in synapse number and plasticity. Although astrocytes play central roles in regulating synapses, it is unclear how changes in astrocytes contribute to age-dependent cognitive decline and vulnerability to neurodegenerative diseases. Here, we identified a unique astrocyte subtype that exhibits dysregulated autophagy and morphology in aging hippocampus. In these autophagy-dysregulated astrocytes (APDAs), autophagosomes abnormally accumulate in swollen processes, impairing protein trafficking and secretion. We found that reduced mammalian target of rapamycin (mTOR) and proteasome activities with lysosomal dysfunction generate APDAs in an age-dependent manner. Secretion of synaptogenic molecules and astrocytic synapse elimination were significantly impaired in APDAs, suggesting that APDAs have lost their ability to control synapse number and homeostasis. Indeed, excitatory synapses and dendritic spines associated with APDAs were significantly reduced. Finally, we found that mouse brains with Alzheimer's disease showed a significantly accelerated increase in APDAs, suggesting potential roles for APDAs in age- and Alzheimer's disease-related cognitive decline and synaptic pathology.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/genética , Astrócitos/metabolismo , Proteostase , Encéfalo/patologia , Envelhecimento , Mamíferos
5.
Nat Med ; 28(9): 1802-1812, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35927581

RESUMO

Clearing amyloid-ß (Aß) through immunotherapy is one of the most promising therapeutic approaches to Alzheimer's disease (AD). Although several monoclonal antibodies against Aß have been shown to substantially reduce Aß burden in patients with AD, their effects on improving cognitive function remain marginal. In addition, a significant portion of patients treated with Aß-targeting antibodies experience brain edema and microhemorrhage associated with antibody-mediated Fc receptor activation in the brain. Here, we develop a phagocytosis inducer for Aß consisting of a single-chain variable fragment of an Aß-targeting monoclonal antibody fused with a truncated receptor binding domain of growth arrest-specific 6 (Gas6), a bridging molecule for the clearance of dead cells via TAM (TYRO3, AXL, and MERTK) receptors. This chimeric fusion protein (αAß-Gas6) selectively eliminates Aß plaques through TAM receptor-dependent phagocytosis without inducing NF-kB-mediated inflammatory responses or reactive gliosis. Furthermore, αAß-Gas6 can induce synergistic clearance of Aß by activating both microglial and astrocytic phagocytosis, resulting in better behavioral outcomes with substantially reduced synapse elimination and microhemorrhage in AD and cerebral amyloid angiopathy model mice compared with Aß antibody treatment. Our results suggest that αAß-Gas6 could be a novel immunotherapeutic agent for AD that overcomes the side effects of conventional antibody therapy.


Assuntos
Doença de Alzheimer , Anticorpos de Cadeia Única , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , NF-kappa B , Placa Amiloide/tratamento farmacológico , Receptores Fc/uso terapêutico , Anticorpos de Cadeia Única/uso terapêutico , c-Mer Tirosina Quinase
6.
J Am Chem Soc ; 133(24): 9236-8, 2011 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-21591706

RESUMO

We synthesized an azobenzene derivative to demonstrate a one-dimensional molecular zipper. The formation and underlying mechanism of the molecular zipper formed by combined hydrogen-bonding and van der Waals interactions between adjacent molecules were investigated on a Au(111) surface using scanning tunneling microscopy and density functional theory calculations.

7.
BMB Rep ; 54(1): 59-69, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33298251

RESUMO

The ability to read, write, and edit genomic information in living organisms can have a profound impact on research, health, economic, and environmental issues. The CRISPR/Cas system, recently discovered as an adaptive immune system in prokaryotes, has revolutionized the ease and throughput of genome editing in mammalian cells and has proved itself indispensable to the engineering of immune cells and identification of novel immune mechanisms. In this review, we summarize the CRISPR/ Cas9 system and the history of its discovery and optimization. We then focus on engineering T cells and other types of immune cells, with emphasis on therapeutic applications. Last, we describe the different modifications of Cas9 and their recent applications in the genome-wide screening of immune cells. [BMB Reports 2021; 54(1): 59-69].


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes , Linfócitos T/imunologia , Sistemas CRISPR-Cas/imunologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA