Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 94(suppl 1): e20210452, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35170668

RESUMO

Microbial therapeutic enzymes are the protagonists in the pharmacological treatment of different human diseases. The intrinsic enzymatic characteristics, such as high affinity and specificity to the corresponding substrate, enable effective therapies, with minimal adverse effects and complete remission. However, immunogenicity, short half-life, low enzymatic yield, and low selectivity regarding available enzyme drugs are currently the main obstacles to their development and the broad adherence to therapeutic protocols. By harboring adapted and still unexplored microbial life, environments of extreme conditions, such as Antarctica, become especially important in the prospecting and development of new enzymatic compounds that present higher yields and the possibility of genetic improvement. Antarctic microorganisms have adaptation mechanisms, such as more fluid cell membranes, production of antifreeze proteins and enzymes with more malleable structures, more robust, stable, selective catalytic sites for their respective substrates, and high antioxidant capacity. In this context, this review aims to explore enzymes synthesized by bacteria and fungi from Antarctica as potential drug producers, capable of providing therapeutic efficacy, less adverse effects, and lower production costs with highlight to L-Asparaginase, collagenase, superoxide dismutase and ribonucleases. In addition, this review highlights the unique biotechnological profile of these Antarctic extremophile microorganisms.


Assuntos
Bactérias , Fungos , Regiões Antárticas , Humanos
2.
An Acad Bras Cienc ; 94(suppl 1): e20210840, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35384978

RESUMO

Currently, antimicrobial resistance has become a global public health problem, which has made the need for new antimicrobial compounds to deal with resistant infections an emergency. However, environments that once offered so many innovative molecules, now already exhaustively exploited, do not meet this need. In this context, a geographically isolated, under-explored and extreme environment, such as Antarctica, which holds organisms with unique physiological and biochemical characteristics, assumes great importance as a potential source of new compounds with antimicrobial activity. In this patent review, we investigate the state of technological development in the field of antimicrobial compounds obtained from Antarctic organisms, highlighting the main countries and researchers active in the field, the species utilized, the compounds obtained, and their possible therapeutic applications. As results, few patent documents were found, however they encompass a wide diversity of compounds and species, indicating a great antimicrobial potential present in Antarctic biota, including compounds active against the most important human pathogenic microorganisms, such as including methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus spp. and multi-resistant Mycobacterium tuberculosis. Furthermore, due to the increasing trend in patent applications, a significant rise in the number of patents in this area is expected in the coming years.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Regiões Antárticas , Antibacterianos/farmacologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA