Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 25(Pt 4): 1261-1270, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979189

RESUMO

Xi-cam is an extensible platform for data management, analysis and visualization. Xi-cam aims to provide a flexible and extensible approach to synchrotron data treatment as a solution to rising demands for high-volume/high-throughput processing pipelines. The core of Xi-cam is an extensible plugin-based graphical user interface platform which provides users with an interactive interface to processing algorithms. Plugins are available for SAXS/WAXS/GISAXS/GIWAXS, tomography and NEXAFS data. With Xi-cam's `advanced' mode, data processing steps are designed as a graph-based workflow, which can be executed live, locally or remotely. Remote execution utilizes high-performance computing or de-localized resources, allowing for the effective reduction of high-throughput data. Xi-cam's plugin-based architecture targets cross-facility and cross-technique collaborative development, in support of multi-modal analysis. Xi-cam is open-source and cross-platform, and available for download on GitHub.

2.
Artigo em Inglês | MEDLINE | ID: mdl-33033414

RESUMO

The directed self-assembly (DSA) of block copolymers (BCPs) is a promising low-cost approach to patterning structures with critical dimensions (CDs) which are smaller than can be achieved by traditional photolithography. The CD of contact holes can be reduced by assembling a cylindrical BCP inside a patterned template and utilizing the native size of the cylinder to dictate the reduced dimensions of the hole. This is a particularly promising application of the DSA technique, but in order for this technology to be realized there is a need for three-dimensional metrology of the internal structure of the patterned BCP in order to understand how template properties and processing conditions impact BCP assembly. This is a particularly challenging problem for traditional metrologies owing to the three-dimensional nature of the structure and the buried features. By utilizing small-angle X-ray scattering and changing the angle between the incident beam and sample we can reconstruct the three-dimensional shape profile of the empty template and the residual polymer after self-assembly and removal of one of the phases. A two-dimensional square grid pattern of the holes results in scattering in both in-plane directions, which is simplified by converting to a radial geometry. The shape is then determined by simulating the scattering from a model and iterating that model until the simulated and experimental scattering profiles show a satisfactory match. Samples with two different processing conditions are characterized in order to demonstrate the ability of the technique to evaluate critical features such as residual layer thickness and sidewall height. It was found that the samples had residual layer thicknesses of 15.9 ± 3.2 nm and 4.5 ± 2.2 nm, which were clearly distinguished between the two different DSA processes and in good agreement with focused ion beam scanning transmission electron microscopy (FIBSTEM) observations. The advantage of the X-ray measurements is that FIBSTEM characterizes around ten holes, while there are of the order of 800 000 holes illuminated by the X-ray beam.

3.
Macromolecules ; 51(18)2018.
Artigo em Inglês | MEDLINE | ID: mdl-33033416

RESUMO

Bottlebrush block copolymers offer rich opportunities for the design of complex hierarchical materials. As consequences of the densely grafted molecular architecture, bottlebrush polymers can adopt highly extended backbone conformations and exhibit unique physical properties. A recent report has described the unusual phase behavior of ABC bottlebrush triblock terpolymers bearing grafted poly(D,L-lactide) (PLA), polystyrene (PS), and poly(ethylene oxide) (PEO) blocks (LSO). In this work, a combination of resonant soft X-ray reflectivity (RSoXR), near edge X-ray absorption fine structure spectroscopy (NEXAFS), and self-consistent field theory (SCFT) was used to provide insight into the phase behavior of LSO and underlying backbone chain conformations. Consistent with SCFT calculations, RSoXR measurements confirm a unique mesoscopic ACBC domain connectivity and decreasing lamellar periods (d 0) with increasing backbone length of the PEO block. RSoXR and NEXAFS demonstrate an additional unusual feature of brush LSO thin films: when the overall film thickness is ~3.25d 0, the film-air interface is majority PS (>80%). Since PS is the midblock, the triblocks must adopt looping configurations at the surface, despite the preference for the backbone to be extended. This result is supported by backbone concentrations calculated through SCFT, which suggest that looping midblocks are present throughout the film. Collectively, this work provides evidence for the flexibility of the bottlebrush backbone and the consequences of low-χ block copolymer design. We propose that PEO blocks localize at the PS/PLA domain interfaces in order to screen the highest-χ contacts in the system, driving the formation of loops. These insights introduce a potential route to overcome the intrinsic penalties to interfacial curvature imposed by the bottlebrush architecture, enabling the design of unique self-assembled materials.

4.
Macromolecules ; 51(1): 173-180, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29706666

RESUMO

Advancements in the directed self-assembly of block copolymers (BCPs) have prompted the development of new materials with larger effective interaction parameters (χe). This enables BCP systems with phase separation at increasingly small degrees of polymerization (N). Very often these systems reside near the order-disorder transition and fit between the weak and strong segregation limits where the behavior of BCP systems is not as thoroughly understood. Utilizing resonant soft X-ray reflectivity (RSoXR) enables both the BCP pitch (L0) and interface width (wM) to be determined simultaneously, through a direct characterization of the composition profile of BCP lamellae oriented parallel to a substrate. A series of high χe BCPs with χe ranging from ≈0.04 to 0.25 and χeN from 19 to 70 have been investigated. The L0/wm ratio serves as an important metric for the feasibility of a material for nanopatterning applications; the results of the RSoXR measurement are used to establish a relationship between χe and L0/wm. The results of this analysis are correlated with experimentally established limits for the functionality of BCPs in nanopatterning applications. These results also provide guidance for the magnitude of χe needed to achieve small interface width for samples with sub-10 nm L0.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38680764

RESUMO

There is a need to characterize nanoscale molecular orientation in soft materials, and polarized scattering is a powerful means to measure this property. However, few approaches have been demonstrated that quantitatively relate orientation to scattering. Here, a modeling framework to relate the molecular orientation of nanostructures to polarized resonant soft X-ray scattering measurements is developed. A variable-angle transmission measurement called critical-dimension X-ray scattering enables the characterization of the three-dimensional shape of periodic nanostructures. When this measurement is conducted at resonant soft X-ray energies with different polarizations to measure soft material nanostructures, the scattering contains convolved information about the nanostructure shape and the preferred molecular orientation as a function of position, which is extracted by fitting using inverse iterative algorithms. A computationally efficient Born approximation simulation of the scattering has been developed, with a full tensor treatment of the electric field that takes into account biaxial molecular orientation, and this approach is validated by comparing it with a rigorous coupled wave simulation. The ability of various sample models to generate unique best fit solutions is then analyzed by generating simulated scattering pattern sets and fitting them with an inverse iterative algorithm. The interaction of the measurement geometry and the change in orientation across a periodic repeat unit leads to distinct asymmetry in the scattering pattern which must be considered for an accurate fit of the scattering.

6.
ACS Appl Mater Interfaces ; 9(37): 31325-31334, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28541658

RESUMO

The directed self-assembly (DSA) of block copolymers (BCPs) is a potential solution for patterning critical features for integrated circuits at future technology nodes. For this process to be implemented, there needs to be a better understanding of how the template guides the assembly and induces subsurface changes in the lamellar structure. Using a rotational transmission X-ray scattering measurement coupled with soft X-rays to improve contrast between polymer components, the impact of the ratio of the guiding stripe width (W) to the BCP pitch (L0) was investigated. For W/L0 < 1, continuous vertical lamella were observed, with some fluctuations in the interface profile near the template that smoothed out further up the structure. Near W/L0 ≈ 1.5, the arrangement of the lamella shifted, moving from polystyrene centered on the guiding stripe to poly(methyl methacrylate) centered on the guiding stripe.

7.
J Phys Chem B ; 117(46): 14557-67, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24195584

RESUMO

Thermally convertible organic materials are useful for the fabrication of multilayered thin film electronic devices such as solar cells. However, substantial changes in molecular ordering can occur during the conversion process that may lead to multiple polymorphs having differing electronic properties. In-situ grazing incidence wide-angle X-ray scattering with 2-D detection (2-D GIWAXS) was used to study the changes in the thin film crystal structure, texture, and crystallite size of a convertible small-molecule electron donor, tetrabenzoporphyrin (BP), during thermal conversion from the precursor bicycloporphyrin (CP) and the resulting crystal-crystal phase transition from a metastable phase (phase I) to a stable phase (phase II). The annealing temperature and the presence of an underlying BP layer both affect the phase-transition behavior. Phase II has a much weaker degree of crystalline texture than phase I, attributed to changes in molecular packing to achieve a herringbone arrangement. The unit cell for phase I was determined by electron diffraction and GIWAXS, and the thin film structure of phase II matched the previously determined bulk structure. The texture of crystallites in phase II was characterized by the simulation of the GIWAXS pattern. Transmission electron microscopy revealed differences in the morphology, grain size, and film coverage of the two polymorphs. Peak shape analysis with corrections for geometric smearing and paracrystalline disorder showed an increase in crystallite size from phase I to phase II. These results demonstrate the utility of in-situ 2-D GIWAXS in revealing polymorphic phases during the structural transition of thermally convertible organic semiconductors, the presence of which may impact the performance of solar cells.

8.
J Phys Chem B ; 116(45): 13568-74, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23113748

RESUMO

The thermotropic behavior of [6,6]-phenyl-C(61)-butyric acid n-butyl ester (PCBNB) in powder and thin film form was investigated using X-ray diffraction and transmission electron microscopy. Upon heating PCBNB powder above its glass-transition temperature, an amorphous-to-crystalline transition (i.e., cold crystallization) and a subsequent melting of these crystals were observed. A thin film of PCBNB was observed to order on a simple hexagonal lattice (HEX) with the c axis preferentially oriented normal to film at an annealing temperature of 180 °C but became disordered above 200 °C, consistent with the powder results. However, when annealed at 160 °C, the PCBNB thin film ordered on a superlattice of the HEX as indicated both by electron diffraction and high-angle annular dark field scanning TEM (HAADF-STEM) images. The formation of the HEX superlattice polymorph was independent of both solvent and substrate and could be formed both on heating from the amorphous as cast state and by cooling from the HEX structure formed at a higher temperature. HAADF-STEM shows that the superlattice corresponds to a regular deficiency of PCBNB molecules on every fifth (1 1[combining overline] 0 0) plane of the HEX structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA