Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Angew Chem Int Ed Engl ; 63(16): e202401323, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38410064

RESUMO

When designing a molecular electronic device for a specific function, it is necessary to control whether the charge-transport mechanism is phase-coherent transmission or particle-like hopping. Here we report a systematic study of charge transport through single zinc-porphyrin molecules embedded in graphene nanogaps to form transistors, and show that the transport mechanism depends on the chemistry of the molecule-electrode interfaces. We show that van der Waals interactions between molecular anchoring groups and graphene yield transport characteristic of Coulomb blockade with incoherent sequential hopping, whereas covalent molecule-electrode amide bonds give intermediately or strongly coupled single-molecule devices that display coherent transmission. These findings demonstrate the importance of interfacial engineering in molecular electronic circuits.

2.
J Am Chem Soc ; 144(24): 10912-10920, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35675904

RESUMO

Metallaphotoredox chemistry has recently witnessed a surge in interest within the field of synthetic organic chemistry through the use of abundant first-row transition metals combined with suitable photocatalysts. The intricate details arising from the combination of two (or more) catalytic components during the reaction and especially the inter-catalyst interactions remain poorly understood. As a representative example of a catalytic process featuring such intricacies, we here present a meticulous study of the mechanism of a cobalt-organophotoredox catalyzed allylation of aldehydes. Importantly, the commonly proposed elementary steps in reductive metallaphotoredox chemistry are more complex than previously assumed. After initial reductive quenching, a transient charge-transfer complex forms that interacts with both the transition-metal catalyst and the catalytic base. Surprisingly, the former interaction leads to deactivation due to induced charge recombination, while the latter promotes deprotonation of the electron donor, which is the crucial step to initiate productive catalysis but is often neglected. Due to the low efficiency of this latter process, the overall catalytic reaction is photon-limited and the cobalt catalyst remains in a dual resting state, awaiting photoinduced reduction. These new insights are of general importance to the synthetic community, as metallaphotoredox chemistry has become a powerful tool used in the formation of elusive compounds through carbon-carbon bond formations. Understanding the underlying aspects that determine the efficiency of such reactions provides a conceptually stronger reactivity paradigm to empower future approaches to synthetic challenges that rely on dual metallaphotoredox catalysis.


Assuntos
Aldeídos , Carbono , Aldeídos/química , Carbono/química , Catálise , Cobalto
3.
Phys Rev Lett ; 129(20): 207702, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36462006

RESUMO

The outcome of an electron-transfer process is determined by the quantum-mechanical interplay between electronic and vibrational degrees of freedom. Nonequilibrium vibrational dynamics are known to direct electron-transfer mechanisms in molecular systems; however, the structural features of a molecule that lead to certain modes being pushed out of equilibrium are not well understood. Herein, we report on electron transport through a porphyrin dimer molecule, weakly coupled to graphene electrodes, that displays sequential tunneling within the Coulomb-blockade regime. The sequential transport is initiated by current-induced phonon absorption and proceeds by rapid sequential transport via a nonequilibrium vibrational distribution of low-energy modes, likely related to torsional molecular motions. We demonstrate that this is an experimental signature of slow vibrational dissipation, and obtain a lower bound for the vibrational relaxation time of 8 ns, a value dependent on the molecular charge state.

4.
Angew Chem Int Ed Engl ; 60(28): 15266-15270, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33860978

RESUMO

An efficient and attractive Co/organophotoredox dual catalysis protocol has been developed allowing the stereoselective access to a wide variety of syn-configured 1,3-diols featuring quaternary carbon centers. The synthesis of the target molecules is achieved under ambient reaction conditions using modular and accessible reagents, substituted vinyl cyclic carbonates and aldehydes, and in short reaction times. Mechanistic control experiments suggest that the stereoselectivity can be rationalized via a preferred Zimmerman-Traxler transition state comprising a Co(allyl) species and an activated aldehyde. This newly developed process thus expands the use of base metal catalysis in the construction of challenging quaternary carbon stereocenters.

5.
Angew Chem Int Ed Engl ; 59(42): 18446-18451, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33439507

RESUMO

A conceptually novel approach is described for the synthesis of six-membered cyclic carbonates derived from carbon dioxide. The approach utilizes homoallylic precursors that are converted into five-membered cyclic carbonates having a ß-positioned alcohol group in one of the ring substituents. The activation of the pendent alcohol group through an N-heterocyclic base allows equilibration towards a thermodynamically disfavored six-membered carbonate analogue that can be trapped by an acylating agent. Various control experiments and computational analysis of this manifold are in line with a process that is primarily dictated by a kinetically controlled acylation step. This cascade process delivers an ample diversity of six-membered cyclic carbonates in excellent yields and chemoselectivities under mild reaction conditions.

6.
Phys Chem Chem Phys ; 21(22): 11676-11688, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31134254

RESUMO

The pulse EPR method ELDOR-detected NMR (EDNMR) is applied to two Cu(ii)-porphyrin dimers that are suitable building blocks for molecular wires. One of the dimers is meso-meso singly linked, the other one is ß, meso, ß-fused. We show experimentally and theoretically that EDNMR spectra contain information about the electron-electron couplings. The spectra of the singly linked dimer are consistent with a perpendicular arrangement of the porphyrin planes and negligible exchange coupling. In addition, the resolution is good enough to distinguish 63Cu and 65Cu in frozen glassy solution and to resolve a metal-ion nuclear quadrupole coupling of 32 MHz. In the case of the fused dimer, we observe so far unreported signal enhancements, or anti-holes, in the EDNMR spectra. These are readily explained in a generalized framework based on [Cox et al., J. Magn. Reson., 2017, 280, 63-78], if an effective spin of S = 1 is assumed, in accordance with SQUID measurements. The positions of the anti-holes encode a zero-field splitting with |D| = 240 MHz, which is about twice as large as expected from the point-dipole approximation. These findings demonstrate the previously unrecognized applicability and versatility of the EDNMR technique in the quantitative study of complex paramagnetic compounds.

7.
J Am Chem Soc ; 140(40): 12877-12883, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30207150

RESUMO

A key goal in molecular electronics has been to find molecules that facilitate efficient charge transport over long distances. Normally, molecular wires become less conductive with increasing length. Here, we report a series of fused porphyrin oligomers for which the conductance increases substantially with length by >10-fold at a bias of 0.7 V. This exceptional behavior can be attributed to the rapid decrease of the HOMO-LUMO gap with the length of fused porphyrins. In contrast, for butadiyne-linked porphyrin oligomers with moderate inter-ring coupling, a normal conductance decrease with length is found for all bias voltages explored (±1 V), although the attenuation factor (ß) decreases from ca. 2 nm-1 at low bias to <1 nm-1 at 0.9 V, highlighting that ß is not an intrinsic molecular property. Further theoretical analysis using density functional theory underlines the role of intersite coupling and indicates that this large increase in conductance with length at increasing voltages can be generalized to other molecular oligomers.

8.
J Am Chem Soc ; 139(34): 12003-12008, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28809559

RESUMO

The extent of triplet state delocalization is investigated in rigid linear zinc porphyrin oligomers as a function of interporphyrin bonding characteristics, specifically in meso-meso singly linked and ß,meso,ß fused structures, using electron paramagnetic resonance techniques. The results are compared with those of earlier measurements on porphyrin oligomers with alkyne linkers exhibiting different preferred conformations. It is shown that dihedral angles near 90° between the porphyrin planes in directly meso-to-meso linked porphyrin oligomers lead to localization of the photoexcited triplet state on a single porphyrin unit, whereas previous work demonstrated even delocalization over two units in meso-to-meso ethyne or butadiyne-bridged oligomers, where the preferred dihedral angles amount to roughly 30° and 0°, respectively. The triplet states of fused porphyrin oligomers (i.e., porphyrin tapes) exhibit extended conjugation and even delocalization over more than two porphyrin macrocycles, in contrast to meso-to-meso ethyne or butadiyne-bridged oligomers, where the spin density distribution in molecules composed of more than two porphyrin units is not evenly spread across the oligomer chain.

9.
Chemistry ; 20(29): 8965-72, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24958670

RESUMO

Photocatalytic systems often suffer from poor quantum yields due to fast charge recombination: The energy-wasting annihilation of the photochemically created charge-separated state. In this report, we show that the efficiency of photoinduced electron transfer from a sacrificial electron donor to positively charged methyl viologen, or to negatively charged 5,5'-dithiobis(2-nitrobenzoate), increases dramatically upon addition of charged phospholipid vesicles if the charge of the lipids is of the same sign as that of the electron acceptor. Centrifugation and UV/Vis titration experiments showed that the charged photosensitizers adsorb at the liposome surface, that is, where the photocatalytic reaction takes place. The increased photoelectron transfer efficiency in the presence of charged liposomes has been ascribed to preferential electrostatic interactions between the photosensitizer and the membrane, which prevents the formation of photosensitizer-electron-acceptor complexes that are inactive towards photoreduction. Furthermore, it is shown that the addition of liposomes results in a decrease in photoproduct inhibition, which is caused by repulsion of the reduced electron acceptor by the photocatalytic site. Thus, liposomes can be used as a support to perform efficient photocatalysis; the charged photoproducts are pushed away from the liposomes and represent "soluble electrons" that can be physically separated from the place where they were generated.

10.
Inorg Chem ; 52(16): 9456-69, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23909908

RESUMO

In this work the thermal and photochemical reactivity of a series of ruthenium complexes [Ru(terpy)(N-N)(L)](X)2 (terpy = 2,2';6',2″-terpyridine, L = 2-(methylthio)ethanol (Hmte) or water, and X is Cl(-) or PF6(-)) with four different bidentate chelates N-N = bpy (2,2'-bipyridine), biq (2,2'-biquinoline), dcbpy (6,6'-dichloro-2,2'-bipyridine), or dmbpy (6,6'-dimethyl-2,2'-bipyridine), is described. For each chelate N-N the thermodynamic constant of the dark equilibrium between the aqua- and Hmte- complexes, the Hmte photosubstitution quantum yield, and the rate constants of the thermal interconversion between the aqua and Hmte complexes were measured at room temperature. By changing the steric hindrance and electronic properties of the spectator N-N ligand along the series bpy, biq, dcbpy, dmbpy the dark reactivity clearly shifts from a nonlabile equilibrium with N-N = bpy to a very labile thermal equilibrium with N-N = dmbpy. According to variable-temperature rate constant measurements in the dark near pH = 7 the activation enthalpies for the thermal substitution of H2O by Hmte are comparable for all ruthenium complexes, whereas the activation entropies are negative for bpy and biq, and positive for dcbpy and dmbpy complexes. These data are indicative of a change in the substitution mechanism, being interchange associative with nonhindered or poorly hindered chelates (bpy, biq), and interchange dissociative for more bulky ligands (dcbpy, dmbpy). For the most labile dmbpy system, the thermal equilibrium is too fast to allow significant modification of the composition of the mixture using light, and for the nonhindered bpy complex the photosubstitution of Hmte by H2O is possible but thermal binding of Hmte to the aqua complex does not occur at room temperature. By contrast, with N-N = biq or dcbpy the thermodynamic and kinetic parameters describing the formation and breakage of the Ru-S bond lie in a range where the bond forms spontaneously in the dark, but is efficiently cleaved under light irradiation. Thus, the ratio between the aqua and Hmte complex in solution can be efficiently controlled at room temperature using visible light irradiation.


Assuntos
Luz , Compostos Organometálicos/química , Rutênio/química , Enxofre/química , Termodinâmica , Água/química , Cinética , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química
11.
Chemistry ; 18(33): 10271-80, 2012 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-22696438

RESUMO

The new ruthenium complex [Ru(terpy)(dcbpy)(Hmte)](PF(6))(2) ([2](PF(6))(2); dcbpy=6,6'-dichloro-2,2'-bipyridine, terpy=2,2';6',2"-terpyridine, Hmte=2-(methylthio)ethanol) was synthesized. In the crystal structure, this complex is highly distorted, revealing steric congestion between dcbpy and Hmte. In water, [2](2+) forms spontaneously by reacting Hmte and the aqua complex [Ru(terpy)(dcbpy)(OH(2))](2+) ([1](2+)), with a second-order rate constant of 0.025 s(-1) M(-1) at 25 °C. In the dark, the Ru-S bond of [2](2+) is thermally unstable and partially hydrolyzes; in fact, [1](2+) and [2](2+) are in an equilibrium characterized by an equilibrium constant K of 151 M(-1). When exposed to visible light, the Ru-S bond is selectively broken to release [1](2+), that is, the equilibrium is shifted by visible-light irradiation. The light-induced equilibrium shifts were repeated four times without major signs of degradation; the Ru-S coordination bond in [2](2+) can be described as a robust, light-sensitive, supramolecular bond in water. To demonstrate the potential of this system in supramolecular chemistry, a new thioether-cholesterol conjugate (4), which inserts into lipid bilayers through its cholesterol moiety and coordinates to ruthenium through its sulfur atom, was synthesized. Thioether-functionalized, anionic, dimyristoylphosphatidylglycerol (DMPG), lipid vesicles, to which aqua complex [1](2+) efficiently coordinates, were prepared. Upon exposure of the Ru-decorated vesicles to visible light, the Ru-S bond is selectively broken, thus releasing [1](2+) that stays at the water-bilayer interface. When the light is switched off, the metal complex spontaneously coordinates back to the membrane-embedded thioether ligands without a need to heat the system. This process was repeated four times at 35 °C, thus achieving light-triggered hopping of the metal complex at the water-bilayer interface.


Assuntos
Ânions/química , Complexos de Coordenação/química , Bicamadas Lipídicas/química , Piridinas/química , Rutênio/química , Cristalografia por Raios X , Ligantes , Luz , Estrutura Molecular , Fotoquímica
12.
Artigo em Inglês | MEDLINE | ID: mdl-22259384

RESUMO

In the title compound, [Zn(C(4)H(6)N(2))(4)](BF(4))(2), the Zn(II) ion is in a slightly distorted tetra-hedral coordination geometry, with Zn-N distances in the range 1.980 (2)-1.991 (2) Å. The tetra-hedral angles are in the range 104.93 (9)-118.81 (9)°.

13.
J Am Chem Soc ; 133(2): 252-61, 2011 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-21162575

RESUMO

Electrostatic forces play an important role in the interaction between large transition metal complexes and lipid bilayers. In this work, a thioether-cholestanol hybrid ligand (4) was synthesized, which coordinates to ruthenium(II) via its sulfur atom and intercalates into lipid bilayers via its apolar tail. By mixing its ruthenium complex [Ru(terpy)(bpy)(4)](2+) (terpy = 2,2';6',2''-terpyridine; bpy = 2,2'-bipyridine) with either the negatively charged lipid dimyristoylphosphatidylglycerol (DMPG) or with the zwitterionic lipid dimyristoylphosphatidylcholine (DMPC), large unilamellar vesicles decorated with ruthenium polypyridyl complexes are formed. Upon visible light irradiation the ruthenium-sulfur coordination bond is selectively broken, releasing the ruthenium fragment as the free aqua complex [Ru(terpy)(bpy)(OH(2))](2+). The photochemical quantum yield under blue light irradiation (452 nm) is 0.0074(8) for DMPG vesicles and 0.0073(8) for DMPC vesicles (at 25 °C), which is not significantly different from similar homogeneous systems. Dynamic light scattering and cryo-TEM pictures show that the size and shape of the vesicles are not perturbed by light irradiation. Depending on the charge of the lipids, the cationic aqua complex either strongly interacts with the membrane (DMPG) or diffuses away from it (DMPC). Back coordination of [Ru(terpy)(bpy)(OH(2))](2+) to the thioether-decorated vesicles takes place only at DMPG bilayers with high ligand concentrations (25 mol %) and elevated temperatures (70 °C). During this process, partial vesicle fusion was also observed. We discuss the potential of such ruthenium-decorated vesicles in the context of light-controlled molecular motion and light-triggered drug delivery.


Assuntos
Luz , Lipídeos/química , Compostos Organometálicos/química , Rutênio/química , Temperatura , Ligantes , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química
14.
Org Lett ; 23(11): 4447-4451, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34014097

RESUMO

Dual palladium/photoredox-catalysis provides an effective method for the decarboxylative asymmetric synthesis of vicinal α,ß-tri/tetra- or α,ß-tetrasubstituted homoallylic alcohols using Hantzsch-type esters as radical precursors. This mild methodology capitalizes on vinyl cyclic carbonates as accessible reagents providing the target molecules in appreciable to good yields, high branch selectivity, and enantiomeric ratios of up to 94:6, making it a rare example of using prochiral electrophiles for the creation of vicinal congested carbon centers.

15.
Nanoscale Horiz ; 6(1): 49-58, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33107543

RESUMO

The ability to control the charge state of individual molecules wired in two-terminal single-molecule junctions is a key challenge in molecular electronics, particularly in relation to the development of molecular memory and other computational componentry. Here we demonstrate that single porphyrin molecular junctions can be reversibly charged and discharged at elevated biases under ambient conditions due to the presence of a localised molecular eigenstate close to the Fermi edge of the electrodes. In particular, we can observe long-lived charge-states with lifetimes upwards of 1-10 seconds after returning to low bias and large changes in conductance, in excess of 100-fold at low bias. Our theoretical analysis finds charge-state lifetimes within the same time range as the experiments. The ambient operation demonstrates that special conditions such as low temperatures or ultra-high vacuum are not essential to observe hysteresis and stable charged molecular junctions.

16.
Chem Sci ; 12(33): 11121-11129, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34522309

RESUMO

Electron-electron interactions are at the heart of chemistry and understanding how to control them is crucial for the development of molecular-scale electronic devices. Here, we investigate single-electron tunneling through a redox-active edge-fused porphyrin trimer and demonstrate that its transport behavior is well described by the Hubbard dimer model, providing insights into the role of electron-electron interactions in charge transport. In particular, we empirically determine the molecule's on-site and inter-site electron-electron repulsion energies, which are in good agreement with density functional calculations, and establish the molecular electronic structure within various oxidation states. The gate-dependent rectification behavior confirms the selection rules and state degeneracies deduced from the Hubbard model. We demonstrate that current flow through the molecule is governed by a non-trivial set of vibrationally coupled electronic transitions between various many-body ground and excited states, and experimentally confirm the importance of electron-electron interactions in single-molecule devices.

17.
ChemSusChem ; 13(23): 6056-6065, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33022846

RESUMO

The unparalleled potential of substrate-induced reactivity modes in the catalytic conversion of carbon dioxide and alcohol or amine functionalized epoxides is discussed in relation to more conventional epoxide/CO2 coupling strategies. This conceptually new approach allows for a substantial extension of the substitution degree and functionality of cyclic carbonate/carbamate products, which are predominant products in the area of nonreductive CO2 transformations. Apart from the creation of an advanced library of CO2 -based heterocyclic products and intermediates, also the underlying mechanistic reasons for this novel reactivity profile are debated with a prominent role for the design and structure of the involved catalysts.

18.
Nat Commun ; 10(1): 4628, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604934

RESUMO

Off-resonant charge transport through molecular junctions has been extensively studied since the advent of single-molecule electronics and is now well understood within the framework of the non-interacting Landauer approach. Conversely, gaining a qualitative and quantitative understanding of the resonant transport regime has proven more elusive. Here, we study resonant charge transport through graphene-based zinc-porphyrin junctions. We experimentally demonstrate an inadequacy of non-interacting Landauer theory as well as the conventional single-mode Franck-Condon model. Instead, we model overall charge transport as a sequence of non-adiabatic electron transfers, with rates depending on both outer and inner-sphere vibrational interactions. We show that the transport properties of our molecular junctions are determined by a combination of electron-electron and electron-vibrational coupling, and are sensitive to interactions with the wider local environment. Furthermore, we assess the importance of nuclear tunnelling and examine the suitability of semi-classical Marcus theory as a description of charge transport in molecular devices.

19.
Nanoscale ; 11(31): 14820-14827, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31355401

RESUMO

The electronic and magnetic properties of single-molecule transistors depend critically on the molecular charge state. Charge transport in single-molecule transistors is characterized by Coulomb-blocked regions in which the charge state of the molecule is fixed and current is suppressed, separated by high-conductance, sequential-tunneling regions. It is often difficult to assign the charge state of the molecular species in each Coulomb-blocked region due to variability in the work-function of the electrodes. In this work, we provide a simple and fast method to assign the charge state of the molecular species in the Coulomb-blocked regions based on signatures of electron-phonon coupling together with the Pauli-exclusion principle, simply by observing the asymmetry in the current in high-conductance regions of the stability diagram. We demonstrate that charge-state assignments determined in this way are consistent with those obtained from measurements of Zeeman splittings. Our method is applicable at 77 K, in contrast to magnetic-field-dependent measurements, which generally require low temperatures (below 4 K). Due to the ubiquity of electron-phonon coupling in molecular junctions, we expect this method to be widely applicable to single-electron transistors based on single molecules and graphene quantum dots. The correct assignment of charge states allows researchers to better understand the fundamental charge-transport properties of single-molecule transistors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA