Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Microbiol ; 116(5): 1298-1314, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34608686

RESUMO

The filamentous fungus Trichoderma reesei is widely used for industrial cellulase production. In T. reesei, cellulase gene expression is tightly controlled by a regulatory network involving multiple transcription factors. Here, we isolated a novel protein, Rce2, using a pull-down assay and mass spectrometry analysis, from a partial carbon catabolite de-repression mutant, T. reesei Rut-C30, cultured under glucose-repressing conditions. Deletion and overexpression of Rce2 in T. reesei wild-type QM6a and mutant Rut-C30 revealed that Rce2 acts as a repressor of cellulase gene expression. DNase I footprinting assays, electrophoretic mobility shift assays, and chromatin immunoprecipitation assays revealed that Rce2 was located in the nucleus and bound to the consensus sequences 5'-(T/A)NNNNCCG-3' and 5'-CGGNNNN(T/A)-3' in the promoters of cellulase-related genes to repress their transcription. Additionally, Rce2 antagonized Ace3 binding to the cbh1 promoter to repress its transcription. However, Rce2 was not involved in Cre1-mediated carbon catabolite repression. These results demonstrate the mechanism through which Rce2 represses the expression of cellulase genes and provide novel insights into the regulatory system of cellulases and methods that can be used for the regulation of gene expression in T. reesei.


Assuntos
Celulase/biossíntese , Celulase/genética , Hypocreales/genética , Hypocreales/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Repressão Catabólica , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Microbiologia Industrial , Filogenia , Regiões Promotoras Genéticas
2.
Appl Environ Microbiol ; 87(15): e0059321, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34047636

RESUMO

The filamentous fungus Trichoderma reesei is a model strain for cellulase production. Cellulase gene expression in T. reesei is controlled by multiple transcription factors. Here, we identified by comparative genomic screening a novel transcriptional activator, ACE4 (activator of cellulase expression 4), that positively regulates cellulase gene expression on cellulose in T. reesei. Disruption of the ace4 gene significantly decreased expression of four main cellulase genes and the essential cellulase transcription factor-encoding gene ace3. Overexpression of ace4 increased cellulase production by approximately 22% compared to that in the parental strain. Further investigations using electrophoretic mobility shift assays, DNase I footprinting assays, and chromatin immunoprecipitation assays indicated that ACE4 directly binds to the promoter of cellulase genes by recognizing the two adjacent 5'-GGCC-3' sequences. Additionally, ACE4 directly binds to the promoter of ace3 and, in turn, regulates the expression of ACE3 to facilitate cellulase production. Collectively, these results demonstrate an important role for ACE4 in regulating cellulase gene expression, which will contribute to understanding the mechanism underlying cellulase expression in T. reesei. IMPORTANCET. reesei is commonly utilized in industry to produce cellulases, enzymes that degrade lignocellulosic biomass for the production of bioethanol and bio-based products. T. reesei is capable of rapidly initiating the biosynthesis of cellulases in the presence of cellulose, which has made it useful as a model fungus for studying gene expression in eukaryotes. Cellulase gene expression is controlled through multiple transcription factors at the transcriptional level. However, the molecular mechanisms by which transcription is controlled remain unclear. In the present study, we identified a novel transcription factor, ACE4, which regulates cellulase expression on cellulose by binding to the promoters of cellulase genes and the cellulase activator gene ace3. Our study not only expands the general functional understanding of the novel transcription factor ACE4 but also provides evidence for the regulatory mechanism mediating gene expression in T. reesei.


Assuntos
Celulase/genética , Transativadores/genética , Trichoderma/genética , Celulase/metabolismo , Celulose/metabolismo , Celulose 1,4-beta-Celobiosidase/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Regulação Fúngica da Expressão Gênica , Trichoderma/crescimento & desenvolvimento , Trichoderma/metabolismo
3.
Microb Cell Fact ; 18(1): 81, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31077201

RESUMO

BACKGROUND: Cellulolytic enzymes produced by the filamentous fungus Trichoderma reesei are commonly used in biomass conversion. The high cost of cellulase is still a significant challenge to commercial biofuel production. Improving cellulase production in T. reesei for application in the cellulosic biorefinery setting is an urgent priority. RESULTS: Trichoderma reesei hyper-cellulolytic mutant SS-II derived from the T. reesei NG14 strain exhibited faster growth rate and more efficient lignocellulosic biomass degradation than those of RUT-C30, another hyper-cellulolytic strain derived from NG14. To identify any genetic changes that occurred in SS-II, we sequenced its genome using Illumina MiSeq. In total, 184 single nucleotide polymorphisms and 40 insertions and deletions were identified. SS-II sequencing revealed 107 novel mutations and a full-length wild-type carbon catabolite repressor 1 gene (cre1). To combine the mutations of RUT-C30 and SS-II, the sequence of one confirmed beneficial mutation in RUT-C30, cre196, was introduced in SS-II to replace full-length cre1, forming the mutant SS-II-cre196. The total cellulase production of SS-II-cre196 was decreased owing to the limited growth of SS-II-cre196. In contrast, 57 genes mutated only in SS-II were selected and knocked out in RUT-C30. Of these, 31 were involved in T. reesei growth or cellulase production. Cellulase activity was significantly increased in five deletion strains compared with that in two starter strains, RUT-C30 and SS-II. Cellulase production of T. reesei Δ108642 and Δ56839 was significantly increased by 83.7% and 70.1%, respectively, compared with that of RUT-C30. The amount of glucose released from pretreated corn stover hydrolyzed by the crude enzyme from Δ108642 increased by 11.9%. CONCLUSIONS: The positive attribute confirmed in one cellulase hyper-producing strain does not always work efficiently in another cellulase hyper-producing strain, owing to the differences in genetic background. Genome re-sequencing revealed novel mutations that might affect cellulase production and other pathways indirectly related to cellulase formation. Our strategy of combining the mutations of two strains successfully identified a number of interesting phenotypes associated with cellulase production. These findings will contribute to the creation of a gene library that can be used to investigate the involvement of various genes in the regulation of cellulase production.


Assuntos
Celulase , Genômica/métodos , Trichoderma , Biomassa , Celulase/genética , Celulase/metabolismo , Glucose/metabolismo , Mutação , Trichoderma/genética , Trichoderma/crescimento & desenvolvimento , Trichoderma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA