Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Biotechnol (NY) ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896300

RESUMO

Polyethylene microplastics (PE-MPs) were widespread in the marine environment; thus, their influences on marine hermaphroditic fish cannot be ignored. This study intends to evaluate the adverse biological effects of two different sources of PE, identified by Raman spectroscopy, on protandrous yellowfin seabream (Acanthopagrus latus) larvae. Growth retardation, brain lesions, head/body length ratio increase, and neuroendocrine system disorders were found, and growth and neuroendocrine regulation-related genes such as sstr2, ghrb, irs1, UGT2B15, UGT2C1, drd4a, esr2b, hsd3b7, and hsd17b2 were identified. PE microbeads (100 µm) showed more severe tissue damage on fish, while environmental PE fibers (500-2500 µm) showed more imperceptible adverse effects. There were 218 DEGs up-regulated and 147 DEGs down-regulated in the environmental PE group, while 1284 (up) and 1267 (down) DEGs were identified in the virgin PE group. PE-MP stress influenced physiological processes like growth and neuroendocrine regulation and cholesterol-steroid metabolism, and caused tissue damage in the fish larvae. The study highlights the effects of environmental PE exposure on hermaphroditic protandrous fish.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA