RESUMO
Common in fungal extracellular membrane (CFEM) domain is unique in fungal proteins and some of which contribute to iron acquisition in yeast. However, their roles in iron acquisition remain largely unknown in filamentous fungi. In this study, 12 CFEM-containing proteins were bioinformatically identified in the filamentous entomopathogenic fungus Beauveria bassiana, and the roles of 11 genes were genetically characterized. Transmembrane helices were critical for their association with intracellular membranes, and their number varied among proteins. Eleven CFEM genes significantly contribute to vegetative growth under iron starvation and virulence. Notably, the virulence of most disruptants could be significantly weakened by a decrease in iron availability, in which the virulence of ΔBbcfem7 and 8 strains was partially recovered by exogenous hemin. ΔBbcfem7 and 8 mutants displayed defective competitiveness against the sister entomopathogenic fungus Beauveria brongniartii. All 11 disruptants displayed impaired growth in the antagonistic assay with the saprotrophic fungus Aspergillus niger, which could be repressed by exogenous ferric ions. These findings not only reveal the systematic contributions of CFEM proteins to acquire two forms of iron (i.e. heme and ferric ion) in the entire lifecycle of entomopathogenic fungi but also help to better understand the mechanisms of fungus-host and inter-fungus interactions.
Assuntos
Beauveria , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ferro/metabolismo , Esporos Fúngicos/metabolismo , Virulência/genéticaRESUMO
Sterol carrier protein 2 (SCP2) represents a family of proteins binding a variety of lipids and plays essential roles in cellular physiology. However, its physiological roles are largely unknown in filamentous fungi. In this study, we functionally characterized an orthologous Scp2 gene in the filamentous insect pathogenic fungus Beauveria bassiana (BbScp2). BbScp2 was verified to be a peroxisomal protein and displayed different affinities to various lipids, with strong affinity to palmitic acid (PA) and ergosterol (ES). No significant binding activity was detected between protein and oleic acid (OA) or linoleic acid (LA). Ablation of BbScp2 did not cause significant effects on fungal growth on various carbon sources, but resulted in a modest reduction in conidial (49%) and blastospore yield (45%). In addition, exogenous lipids could recover the defectives in conidiation of ΔBbScp2 mutant strain. BbScp2 was required for the cytomembrane functionality in germlings, and its loss resulted in a more significant decrease in virulence indicated by cuticle infection assay than intrahemocoel injection assay. Our findings indicate that Scp2 links the lipid trafficking to the asexual differentiation and virulence of B. bassiana.
Assuntos
Beauveria , Animais , Beauveria/genética , Proteínas de Transporte , Proteínas Fúngicas/genética , Insetos , Lipídeos , Esporos Fúngicos/genética , Virulência/genéticaRESUMO
COVID-19 is a serious respiratory disease. The ever-increasing number of cases is causing heavier loads on the health service system. Using 38 blood test indicators on the first day of admission for the 422 patients diagnosed with COVID-19 (from January 2020 to June 2021) to construct different machine learning (ML) models to classify patients into either mild or severe cases of COVID-19. All models show good performance in the classification between COVID-19 patients into mild and severe disease. The area under the curve (AUC) of the random forest model is 0.89, the AUC of the naive Bayes model is 0.90, the AUC of the support vector machine model is 0.86, and the AUC of the KNN model is 0.78, the AUC of the Logistic regression model is 0.84, and the AUC of the artificial neural network model is 0.87, among which the naive Bayes model has the best performance. Different ML models can classify patients into mild and severe cases based on 38 blood test indicators taken on the first day of admission for patients diagnosed with COVID-19.
Assuntos
Análise Química do Sangue , COVID-19/classificação , Redes Neurais de Computação , Índice de Gravidade de Doença , Máquina de Vetores de Suporte , Área Sob a Curva , COVID-19/sangue , COVID-19/diagnóstico , Testes Hematológicos , Humanos , Modelos Logísticos , SARS-CoV-2RESUMO
Acetyl-coenzyme A (CoA) synthetase (Acs) links cellular metabolism and physiology by catalyzing acetate and CoA into acetyl-CoA. However, the biological roles of Acs are not well studied in entomopathogenic fungi. In this study, two Acs proteins (BbAcs1 and BbAcs2) was functionally characterized in the filamentous insect pathogenic fungus Beauveria bassiana. BbAcs1 and BbAcs2 localize in cytoplasm and peroxisome, respectively. BbAcs1 contributes to vegetative growth on fatty acids as carbon source, and BbAcs2 did not. Both genes did not contribute to fungal response to stresses. The BbAcs1 loss conferred a slight influence on conidiation, and did not result in the defects in blastospore formation. On the contrary, BbAcs2 significantly contributes to lipid metabolism in germlings, blastospore formation, and virulence. The results indicated that Acs2 played a more predominant role than Acs1 in B. bassiana, which links the acetyl-CoA metabolism with the lifestyle of entomopathogenic fungi.
Assuntos
Beauveria , Saccharomyces cerevisiae , Acetato-CoA Ligase/genética , Acetilcoenzima A , Beauveria/genética , Carbono , Coenzima A Ligases/genética , Ácidos GraxosRESUMO
AIMS: Peroxins Pex5 and Pex7 belong to the peroxisomal import machinery and recognize proteins containing peroxisomal targeting signal (PTS) type 1 and type 2, respectively. This study seeks to characterize these two peroxins in the entomopathogenic fungus Beauveria bassiana. METHODS AND RESULTS: The orthologs of Pex5 and Pex7 in B. bassiana (BbPex5 and BbPex7) were functionally analyzed via protein localization and gene disruption. BbPex5 and BbPex7 were associated with peroxisome and specifically required for PTS1 and PTS2 pathways, respectively, which were demonstrated to be involved in development, tolerance to oxidative stress and virulence. ΔBbPex5 mutant displayed additionally defectives that were undetected in ΔBbPex7 in vegetative growth and resistance to osmotic and cell wall-perturbing stresses. Notably, Woronin body major protein Hex1 with PTS1 linked this organelle to the development and virulence of B. bassiana, which indicates that Woronin body is associated with the roles of PTS1 pathway. CONCLUSION: Both PTS1 and PTS2 pathways are involved in broad physiological process, and the PTS1 pathway acts as a main peroxisomal import pathway. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows the functional divergence of different peroxins and improves our understanding of organellar physiology involved in biocontrol potential of the entomopathogenic fungi.
Assuntos
Beauveria , Animais , Beauveria/genética , Beauveria/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Insetos , Receptor 2 de Sinal de Orientação para Peroxissomos , Receptores Citoplasmáticos e Nucleares/genética , VirulênciaRESUMO
The maternal-foetal interface is an immune-privileged site where the semi-allogeneic embryo is protected from attacks by the maternal immune system. Uterine macrophages are key players in establishing and maintaining pregnancy, and the dysregulation of the M1-M2 subpopulation balance causes abortion. We separated two distinct mouse uterine macrophage subpopulations during early pregnancy, CD45+ F4/80+ CD206- M1-like (M1) and CD45+ F4/80+ CD206+ M2-like (M2) cells. The M1 preponderance was significantly exaggerated at 6 hours after lipopolysaccharide (LPS) treatment, and adoptive transfer of M2 macrophages partially rescued LPS-induced abortion. RNA sequencing analysis of mouse uterine M2 versus M1 revealed 1837 differentially expressed genes (DEGs), among which 629 was up-regulated and 1208 was down-regulated. Histone deacetylase 9 (Hdac9) was one of the DEGs and validated to be significantly up-regulated in uterine M2 as compared with M1. Remarkably, this differential expression profile between M1 and M2 was also evident in primary splenic macrophages and in vitro polarized murine peritoneal, bone marrow-derived and RAW 264.7 macrophages. In Hdac9/HDAC9 knockout RAW 264.7 and human THP-1-derived macrophages, the expression of M1 differentiation markers was unchanged or decreased whereas M2 markers were increased compared with the wild-type cells, and these effects were unrelated to compromised proliferation. Furthermore, Hdac9/HDAC9 ablation significantly enhanced the phagocytosis of fluorescent microspheres in M2 Raw 264.7 cells yet decreased the capacity of THP-1-derived M1 macrophages. The above results demonstrate that Hdac9/HDAC9 deficiency exaggerates M2 macrophage polarization in mouse and human macrophages, which may provide clues for our understanding of the epigenetic regulation on macrophage M1/M2 polarization in maternal-foetal tolerance.
Assuntos
Feto/imunologia , Histona Desacetilases/fisiologia , Lipopolissacarídeos/toxicidade , Macrófagos/imunologia , Proteínas Repressoras/fisiologia , Útero/imunologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Feto/efeitos dos fármacos , Feto/metabolismo , Perfilação da Expressão Gênica/métodos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose , Útero/efeitos dos fármacos , Útero/metabolismoRESUMO
Proper differentiation of trophoblast cells in the human placenta is a prerequisite for a successful pregnancy, and dysregulation of this process may lead to malignant pregnancy outcomes, such as preeclampsia. Finding specific markers for different types of trophoblast cells is essential for understanding trophoblast differentiation. Here, we report that placenta-specific protein 8 (PLAC8) is specifically expressed in the interstitial extravillous trophoblast cells (iEVTs) on the fetomaternal interface. Using model systems, including placental villi-decidua co-culture, iEVTs induction by using primary trophoblast cells or explants, etc., we found that PLAC8 promotes invasion and migration of iEVTs. Mechanistically, time-lapse imaging, GTPase activity assay, co-immunoprecipitation and RNA-seq studies show that PLAC8 increases the Cdc42 and Rac1 activities, and further induces the formation of filopodia at the leading edge of the migratory trophoblast cells. More interestingly, PLAC8 is significantly upregulated under hypoxia and expression of PLAC8 is higher in iEVTs from preeclamptic placentas when compared with those from the normal control placentas. Together, PLAC8 is a new marker for iEVTs and plays an important role in promoting trophoblast invasion and migration.
Assuntos
Placenta/citologia , Placenta/fisiologia , Proteínas/fisiologia , Trofoblastos/fisiologia , Biomarcadores/metabolismo , Estudos de Casos e Controles , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Vilosidades Coriônicas/anatomia & histologia , Técnicas de Cocultura , Decídua/citologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Placenta/irrigação sanguínea , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Pré-Eclâmpsia/fisiopatologia , Gravidez , Proteínas/antagonistas & inibidores , Proteínas/genética , RNA Interferente Pequeno/genética , Regulação para Cima , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismoRESUMO
Corticosteroid-binding globulin (CBG) is a high-affinity plasma protein that binds glucocorticoids (GCs) and regulates their biological activities. The structural and functional properties of CBG are crucial to understanding the biological actions of GCs in mediating stress responses and the underlying mechanisms. In response to stress, avian CBGs modulate the free and bound fractions of plasma corticosterone (CORT, the main GC), enabling them to mediate the physiological and behavioral responses that are fundamental for balancing the trade-off of energetic investment in reproduction, immunity, growth, metabolism and survival, including adaptations to extreme high-elevation or high-latitude environments. Unlike other vertebrates, avian CBGs substitute for sex hormone-binding globulin (SHBG) in transporting androgens and regulating their bioavailability, since birds lack an Shbg gene. The three-dimensional structures of avian and mammalian CBGs are highly conserved, but the steroid-binding site topographies and their modes of binding steroids differ. Given that CBG serves as the primary transporter of both GCs and reproductive hormones in birds, we aim to review the biological properties of avian CBGs in the context of steroid hormone transportation, stress responses and adaptation to harsh environments, and to provide insight into evolutionary adaptations in CBG functions occurred to accommodate physiological and endocrine changes in birds compared with mammals.
RESUMO
Insulin resistance (IR) is a major metabolic risk factor even before the onset of hyperglycemia. Recently, berberine (BBR) is found to improve hyperglycemia and IR. In this study, we investigated whether BBR could improve IR independent of hyperglycemia. Acute insulin-resistant state was induced in rats by systemic infusion of intralipid (6.6%). BBR was administered via different delivery routes before or after the beginning of a 2-h euglycemic-hyperinsulinemic clamp. At the end of experiment, rats were sacrificed, gastrocnemius muscle was collected for detecting mitochondrial swelling, phosphorylation of Akt and AMPK, as well as the mitochondrial permeability regulator cyclophilin D (CypD) protein expression. We showed that BBR administration markedly ameliorated intralipid-induced IR without affecting blood glucose, which was accompanied by alleviated mitochondrial swelling in skeletal muscle. We used human skeletal muscle cells (HSMCs), AML12 hepatocytes, human umbilical vein endothelial cells, and CypD knockout mice to investigate metabolic and molecular alternations. In either HSMCs or AML12 hepatocytes, BBR (5 µM) abolished palmitate acid (PA)-induced increase of CypD protein levels. In CypD-deficient mice, intralipid-induced IR was greatly attenuated and the beneficial effect of BBR was diminished. Furthermore, we demonstrated that the inhibitory effect of BBR on intralipid-induced IR was mainly mediated by skeletal muscle, but not by intestine, liver, or microvasculature; BBR administration suppressed intralipid-induced upregulation of CypD expression in skeletal muscle. These results suggest that BBR alleviates intralipid-induced IR, which is related to the inhibition of CypD protein expression in skeletal muscle.
Assuntos
Berberina/uso terapêutico , Hiperinsulinismo/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Resistência à Insulina/fisiologia , Animais , Linhagem Celular , Ciclofilinas/metabolismo , Emulsões , Humanos , Hiperinsulinismo/induzido quimicamente , Hiperinsulinismo/metabolismo , Masculino , Camundongos , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Fosfolipídeos , Ratos Sprague-Dawley , Óleo de SojaRESUMO
The Mbp1 protein functions as a DNA-binding protein in the MluI cell cycle box-binding complex and plays significant roles in yeast development. In this study, an ortholog of yeast Mbp1, BbMbp1, was characterized in a filamentous insect mycopathogen, Beauveria bassiana. BbMbp1 plays an important role in morphological changes under aerial and liquid environments. On the aerial surface, BbMbp1 was indispensable for the biogenesis of conidiophores and conidiation. Under submerged conditions, the ∆BbMbp1 mutant displayed abnormal spore-producing structures, with a dramatic decrease in blastospore yield (~95%). The virulence of the ∆BbMbp1 mutant was notably weakened, which might be due to the defect in in vivo blastospore formation in the insect. Moreover, disruption of BbMbp1 resulted in a substantial reduction in hyphal growth on cadavers. Comparative transcriptomics revealed that BbMbp1 mediated different transcriptomes during the formation processes of conidia and blastospores. Yeast one-hybrid assays demonstrated that BbMbp1 was required for transcriptional control of a cell wall protein gene, BbCwp, and an integral membrane protein gene, BbImp that played significant roles in conidiation and blastospore formation respectively. Our results demonstrate that BbMbp1 contributes to the morphological transitions in the pathogenic and saprophytic growth of B. bassiana via different genetic pathways.
Assuntos
Beauveria/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Beauveria/patogenicidade , Ciclo Celular/fisiologia , Divisão Celular , Parede Celular/metabolismo , Biologia Computacional , Proteínas Fúngicas/genética , Insetos/microbiologia , Esporos Fúngicos/metabolismo , Transcriptoma , Virulência/genéticaRESUMO
PURPOSE: Data from in vitro and animal studies support the preventive effect of tea (Camellia sinensis) against colorectal cancer. Further, many epidemiologic studies evaluated the association between tea consumption and colorectal cancer risk, but the results were inconsistent. We conducted a meta-analysis of prospective cohort studies to systematically assess the association between tea consumption and colorectal cancer risk. METHODS: A comprehensive literature review was conducted to identify the related articles by searching PubMed and Embase up to June, 2019. Summary relative risks (RRs) and 95% confidence intervals (CIs) were calculated using a fixed effect model. RESULTS: Twenty cohort articles were included in the present meta-analysis involving 2,068,137 participants and 21,437 cases. The combined RR of colorectal cancer for the highest vs. lowest tea consumption was determined to 0.97 (95% CI 0.94-1.01) with marginal heterogeneity (I2 = 24.0%, P = 0.093) among all studies. This indicated that tea consumption had no significant association with colorectal cancer risk. Stratified analysis showed that no significant differences were found in all subgroups. We further conducted the gender-specific meta-analysis for deriving a more precise estimation. No significant association was observed between tea consumption and colorectal cancer risk in male (combined RR = 0.97; 95% CI 0.90-1.04). However, tea consumption had a marginal significant inverse impact on colorectal cancer risk in female (combined RR = 0.93; 95% CI 0.86-1.00). Further, we found a stronger inverse association between tea consumption and risk of colorectal cancer among the female studies with no adjustment of coffee intake (RR: 0.90; 95% CI 0.82-1.00, P < 0.05) compared to the female studies that adjusted for coffee intake (RR = 0.97; 95% CI 0.87-1.09, P > 0.05). CONCLUSIONS: Our finding indicates that tea consumption has no significant impact on the colorectal cancer risk in both genders combined, but gender-specific meta-analysis shows that tea consumption has a marginal significant inverse impact on colorectal cancer risk in female.
Assuntos
Neoplasias Colorretais , Chá , Café , Estudos de Coortes , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/prevenção & controle , Feminino , Humanos , Masculino , Estudos Prospectivos , Risco , Fatores de RiscoRESUMO
Autophagy is a sophisticated mechanism for maintaining cellular homeostasis, in which E1-like enzyme (ATG7) controls the activation of ubiquitin-like conjugation system in the autophagy pathway. In the insect pathogenic fungus Beauveria bassiana, a yeast ortholog of ATG7 was identified and functionally analyzed. Ablation of BbATG7 gene blocks the autophagic process under starvation stress. The mutant ΔBbATG7 exhibited impaired growth on the media with chitin as single nitrogen source. On rich media, gene loss did not cause notable effect on vegetative growth, but resulted in a considerable reduction in conidiation (71.6%) and blastospore yield (61.1%) in the mutant. In addition, the ΔBbATG7 mutant displayed increased sensitivity to stress caused by menadione and Congo red. The virulence of ΔBbATG7 mutant was significantly attenuated as indicated in topical and intrahemocoel injection assays. Our study indicates that BbATG7 contributes to B. bassiana virulence via regulating autophagy pathway and playing non-autophagic functions in the infection cycle.
Assuntos
Proteína 7 Relacionada à Autofagia/genética , Autofagia/genética , Beauveria/genética , Animais , Beauveria/patogenicidade , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Insetos/genética , Insetos/microbiologia , Esporos Fúngicos/genética , Esporos Fúngicos/patogenicidade , Estresse Fisiológico/genética , Virulência/genéticaRESUMO
Epigallocatechin-3-gallate (EGCG) and caffeine in tea exert anti-obesity effects and induces nonalcoholic fatty liver disease (NAFLD) amelioration. However, previous studies usually performed a high-dose EGCG administration, whereas the insecurity was arisen in recent researches. In this study, we treated obese rats with an elaborate dose-40 mg/kg EGCG, 20 mg/kg caffeine, and the coadministration of them as low dose, which were similar to the daily intake; 160 mg/kg EGCG as high dose, which was the maximum safe dose had touched the contentious edge. The results suggested that the coadministration of EGCG and caffeine exerted more remarkable function on suppressing body weight gain, reducing white adipose tissue weight and decreasing the energy intake than single use. This may be due to the variation in serum lipid profile, oxidative stress, and adipose-derived and inflammatory cytokines. The pathological micrographs showed long-term high-fat diets caused severe NAFLD, but it was ameliorated at different levels by all of the administrations. In summary, low dose of EGCG or caffeine only showed a mild effect of anti-obesity and NAFLD amelioration. The coadministration of them could exert a superior curative effect as well as high dose EGCG but no anxiety regarding safety.
Assuntos
Cafeína/administração & dosagem , Catequina/análogos & derivados , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/tratamento farmacológico , Animais , Peso Corporal/efeitos dos fármacos , Catequina/administração & dosagem , Dieta Hiperlipídica , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Masculino , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/complicações , Obesidade/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Chá/químicaRESUMO
The syncytiotrophoblast (STB) plays a key role in maintaining the function of the placenta during human pregnancy. However, the molecular network that orchestrates STB development remains elusive. The aim of this study was to obtain broad and deep insight into human STB formation via transcriptomics. We adopted RNA sequencing (RNA-Seq) to investigate genes and isoforms involved in forskolin (FSK)-induced fusion of BeWo cells. BeWo cells were treated with 50 µM FSK or dimethylsulfoxide (DMSO) as a vehicle control for 24 and 48 h, and the mRNAs at 0, 24 and 48 h was sequenced. We detected 28,633 expressed genes and identified 1,902 differentially expressed genes (DEGs) after FSK treatment for 24 and 48 h. Among the 1,902 DEGs, 461 were increased and 395 were decreased at 24 h, while 879 were up-regulated and 763 were down-regulated at 48 h. When the 856 DEGs identified at 24 h were traced individually at 48 h, they separated into 6 dynamic patterns via a K-means algorithm, and most were enriched in down-even and up-even patterns. Moreover, the Gene Ontology (GO) terms syncytium formation, cell junction assembly, cell fate commitment, calcium ion transport, regulation of epithelial cell differentiation and cell morphogenesis involved in differentiation were clustered, and the MAPK pathway was most significantly regulated. Analyses of alternative splicing isoforms detected 123,200 isoforms, of which 1,376 were differentially expressed. The present deep analysis of the RNA-Seq data of BeWo cell fusion provides important clues for understanding the mechanisms underlying human STB formation.
RESUMO
BACKGROUND: Type 2 diabetes mellitus, obesity and hepatic steatosis showed a strong correlation with metabolic syndrome. However, data on the influence of pancreatic steatosis on metabolic syndrome are lacking. OBJECTIVE: Our aim is to perform the prevalence of pancreatic steatosis in adults and its association with metabolic syndrome in a Chinese population. METHODS: This was a cross-sectional study, randomly selected. A total of 1190 health examination subjects were recruited. Pancreatic steatosis or hepatic steatosis was diagnosed via trans-abdominal sonography. The clinical and metabolic parameters were compared between the two groups, and their associations with pancreatic steatosis were examined. RESULTS: The prevalence of pancreatic steatosis was 30.7%. The presence of pancreatic steatosis was significantly increased by age, gender, central obesity, hepatic steatosis, hypertriglyceridemia and hyperglycemia. In the logistic regression analysis, age (P < 0.05), central obesity (P < 0.01), diabetes (P < 0.05), hypertriglyceridemia (P < 0.05) and hepatic steatosis (P < 0.01) were independently associated with pancreatic steatosis. The number of the parameters of the metabolic syndrome in pancreatic steatosis group was more than that in non-pancreatic steatosis group [(2.5 ± 1.1) vs (1.4 ± 1.2)] (P < 0.01). CONCLUSION: The pancreatic steatosis is strongly associated with the parameters of metabolic syndrome, such as central obesity, diabetes, and hepatic steatosis.
Assuntos
Síndrome Metabólica/complicações , Síndrome Metabólica/epidemiologia , Pancreatopatias/complicações , Pancreatopatias/epidemiologia , Adulto , Fatores Etários , Idoso , Povo Asiático/estatística & dados numéricos , Índice de Massa Corporal , China/epidemiologia , Estudos Transversais , Fígado Gorduroso/complicações , Feminino , Humanos , Hiperglicemia/complicações , Hiperglicemia/epidemiologia , Hipertrigliceridemia/complicações , Hipertrigliceridemia/epidemiologia , Resistência à Insulina , Masculino , Síndrome Metabólica/diagnóstico por imagem , Pessoa de Meia-Idade , Obesidade Abdominal/complicações , Obesidade Abdominal/epidemiologia , Pâncreas/diagnóstico por imagem , Pancreatopatias/diagnóstico por imagem , Prevalência , Fatores de Risco , Fatores Sexuais , UltrassonografiaRESUMO
Cullin 3 (CUL3), a scaffold protein, assembles a large number of ubiquitin ligase complexes, similar to Skp1-Cullin 1-F-box protein complex. Several genetic models have shown that CUL3 is crucial for early embryonic development. Nevertheless, the role of CUL3 in human trophoblast function remains unclear. In this study, immunostaining revealed that CUL3 was strongly expressed in the villous cytotrophoblasts, the trophoblast column, and the invasive extravillous trophoblasts. Silencing CUL3 significantly inhibited the outgrowth of villous explant ex vivo and decreased invasion and migration of trophoblast HTR8/SVneo cells. Furthermore, CUL3 siRNA decreased pro-MMP9 activity and increased the levels of TIMP1 and 2. We also found that the level of CUL3 in the placental villi from pre-eclamptic patients was significantly lower as compared to that from their gestational age-matched controls. Moreover, in the lentiviral-mediated placenta-specific CUL3 knockdown mice, lack of CUL3 resulted in less invasive trophoblast cells in the maternal decidua. Taken together, these results suggest an essential role for CUL3 in the invasion and migration of trophoblast cells, and dysregulation of its expression may be associated with the onset of pre-eclampsia.
Assuntos
Proteínas Culina/genética , Proteínas Culina/fisiologia , Trofoblastos/fisiologia , Animais , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Decídua/metabolismo , Feminino , Inativação Gênica , Vetores Genéticos , Humanos , Imuno-Histoquímica , Lentivirus/genética , Metaloproteinase 9 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/genética , Camundongos , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/fisiopatologia , Gravidez , RNA Interferente Pequeno/farmacologia , Inibidor Tecidual de Metaloproteinase-1/biossíntese , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-2/biossíntese , Inibidor Tecidual de Metaloproteinase-2/genética , Cicatrização/efeitos dos fármacosRESUMO
The placenta has numerous functions, such as transporting oxygen and nutrients and building the immune tolerance of the fetus. Cell fusion is an essential process for placental development and maturation. In human placental development, mononucleated cytotrophoblast (CTB) cells can fuse to form a multinucleated syncytiotrophoblast (STB), which is the outermost layer of the placenta. Nephrin is a transmembrane protein that belongs to the Ig superfamily. Previous studies have shown that nephrin contributes to the fusion of myoblasts into myotubes in zebrafish and mice, presenting a functional conservation with its Drosophila ortholog sticks and stones. However, whether nephrin is involved in trophoblast syncytialization remains unclear. In this study, we report that nephrin was localized predominantly in the CTB cells and STB of human placenta villi from first trimester to term pregnancy. Using a spontaneous fusion model of primary CTB cells, the expression of nephrin was found to be increased during trophoblast cell fusion. Moreover, the spontaneous syncytialization and the expression of syncytin 2, connexin 43, and human chorionic gonadotropin beta were significantly inhibited by nephrin-specific siRNAs. The above results demonstrate that nephrin plays an important role in trophoblast syncytialization.
Assuntos
Diferenciação Celular , Células Gigantes/citologia , Proteínas de Membrana/metabolismo , Placenta/citologia , Trofoblastos/citologia , Animais , Western Blotting , Fusão Celular , Células Cultivadas , Gonadotropina Coriônica Humana Subunidade beta/genética , Gonadotropina Coriônica Humana Subunidade beta/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Feminino , Células Gigantes/metabolismo , Humanos , Técnicas Imunoenzimáticas , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Placenta/metabolismo , Gravidez , Proteínas da Gravidez/genética , Proteínas da Gravidez/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Trofoblastos/metabolismoRESUMO
OBJECTIVE: To evaluate the prophylactic application of antibiotics in oral and maxillofacial surgery and to provide a scientific basis for its reasonable use. METHODS: The use of prophylactic antibiotics in the oral and maxillofacial surgery was conducted in our hospital from January 2011 to August 2013 based on a retrospective survey, and the conditions and affecting factors were analyzed. RESULTS: The utilization rates of prophylactic antibiotics were respectively 98.9%, 61.8%, and 24.6%, showing a downward trend. But the infection rate of surgical site did not significantly increase, and by Fisher's exact test, the difference was not significant (P>0.05). Surgical site infections (SSI) rates did not rise between using and not using prophylactic antibiotics (P>0.05). CONCLUSION: The use of prophylactic antibiotics is greatly influenced by the policy, and along with the decline in antibiotic usage, SSI have not increased significantly.
Assuntos
Antibacterianos/uso terapêutico , Antibioticoprofilaxia/estatística & dados numéricos , Procedimentos Cirúrgicos Bucais , Infecção da Ferida Cirúrgica/prevenção & controle , Humanos , Estudos RetrospectivosRESUMO
PURPOSE: The purpose of this systematic meta-analysis was to evaluate the association between leptin (LEP) and leptin receptor (LEPR) gene polymorphisms and non-Hodgkin lymphoma (NHL) risk. METHODS: All studies published up to July 2014 on the association between LEP and LEPR polymorphisms and NHL risk were identified by searching PubMed, Web of Science, EMBASE, and Google Scholar. Odds ratios (ORs) with 95% confidence intervals (CIs) for LEP and LEPR polymorphisms and NHL were calculated with fixed-effects and random-effects models. RESULTS: LEP G2528A polymorphism was associated with increased, yet not statistically significant risk of NHL (homozygote comparison, OR=1.27, 95% CI=1.01-1.60, p=0.63; heterozygote comparison, OR=1.13, 95% CI=0.86-1.49, p=0.14; dominant model, OR=1.18, 95% CI=0.99-1.41, p=0.21; recessive model, OR=1.18, 95% CI=0.97-1.43, p=0.78; additive model, OR=1.14, 95% CI=1.01-1.28, p=0.52). Significant decrease of NHL risk was found in LEP A19G polymorphism, while no links were detected with the LEPR polymorphisms studied. In subgroup analysis, the pooled results showed that LEP A19G polymorphism was associated with decreased risk of follicular lymphoma (FL) (homozygote comparison, OR=0.56, 95% CI=0.37-0.85, p=0.69). However, no evidence of a significant association was observed in diffuse large B-cell lymphoma (DLBCL) for variant genotypes of all single nucleotide polymorphisms (SNPs). CONCLUSIONS: LEP G2548A polymorphism contributes to NHL susceptibility. Also, our results provide evidence that LEP A19G polymorphism is associated with decreased risk of NHL, especially in FL. Further large-scale and well-designed studies are needed to confirm this association.
Assuntos
Leptina/genética , Linfoma não Hodgkin/genética , Polimorfismo de Nucleotídeo Único , Receptores para Leptina/genética , Distribuição de Qui-Quadrado , Predisposição Genética para Doença , Heterozigoto , Homozigoto , Humanos , Linfoma não Hodgkin/diagnóstico , Linfoma não Hodgkin/etnologia , Linfoma não Hodgkin/prevenção & controle , Razão de Chances , Fatores de Proteção , Fatores de RiscoRESUMO
Human trophoblast syncytialization, a process of cell-cell fusion, is one of the most important yet least understood events during placental development. Investigating the fusion process in a placenta in vivo is very challenging given the complexity of this process. Application of primary cultured cytotrophoblast cells isolated from term placentas and BeWo cells derived from human choriocarcinoma formulates a biphasic strategy to achieve the mechanism of trophoblast cell fusion, as the former can spontaneously fuse to form the multinucleated syncytium and the latter is capable of fusing under the treatment of forskolin (FSK). Live-cell imaging is a powerful tool that is widely used to investigate many physiological or pathological processes in various animal models or humans; however, to our knowledge, the mechanism of trophoblast cell fusion has not been reported using a live- cell imaging manner. In this study, a live-cell imaging system was used to delineate the fusion process of primary term cytotrophoblast cells and BeWo cells. By using live staining with Hoechst 33342 or cytoplasmic dyes or by stably transfecting enhanced green fluorescent protein (EGFP) and DsRed2-Nuc reporter plasmids, we observed finger-like protrusions on the cell membranes of fusion partners before fusion and the exchange of cytoplasmic contents during fusion. In summary, this study provides the first video recording of the process of trophoblast syncytialization. Furthermore, the various live-cell imaging systems used in this study will help to yield molecular insights into the syncytialization process during placental development.