Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Bacteriol ; 196(16): 3023-35, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24914188

RESUMO

Escherichia coli strains overproducing DinB undergo survival loss; however, the mechanisms regulating this phenotype are poorly understood. Here we report a genetic selection revealing DinB residues essential to effect this loss-of-survival phenotype. The selection uses strains carrying both an antimutator allele of DNA polymerase III (Pol III) α-subunit (dnaE915) and either chromosomal or plasmid-borne dinB alleles. We hypothesized that dnaE915 cells would respond to DinB overproduction differently from dnaE(+) cells because the dnaE915 allele is known to have an altered genetic interaction with dinB(+) compared to its interaction with dnaE(+). Notably, we observe a loss-of-survival phenotype in dnaE915 strains with either a chromosomal catalytically inactive dinB(D103N) allele or a low-copy-number plasmid-borne dinB(+) upon DNA damage treatment. Furthermore, we find that the loss-of-survival phenotype occurs independently of DNA damage treatment in a dnaE915 strain expressing the catalytically inactive dinB(D103N) allele from a low-copy-number plasmid. The selective pressure imposed resulted in suppressor mutations that eliminated growth defects. The dinB intragenic mutations examined were either base pair substitutions or those that we inferred to be loss of function (i.e., deletions and insertions). Further analyses of selected novel dinB alleles, generated by single-base-pair substitutions in the dnaE915 strain, indicated that these no longer effect loss of survival upon overproduction in dnaE(+) strains. These mutations are mapped to specific areas of DinB; this permits us to gain insights into the mechanisms underlying the DinB-mediated overproduction loss-of-survival phenotype.


Assuntos
Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/fisiologia , Expressão Gênica , Viabilidade Microbiana , Seleção Genética , Alelos , Análise Mutacional de DNA , Proteínas de Escherichia coli/química , Modelos Moleculares , Mutagênese Insercional , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Plasmídeos , Mutação Puntual , Conformação Proteica , Deleção de Sequência , Supressão Genética
2.
J Bacteriol ; 195(6): 1179-93, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23292773

RESUMO

The activity of DinB is governed by the formation of a multiprotein complex (MPC) with RecA and UmuD. We identified two highly conserved surface residues in DinB, cysteine 66 (C66) and proline 67 (P67). Mapping on the DinB tertiary structure suggests these are noncatalytic, and multiple-sequence alignments indicate that they are unique among DinB-like proteins. To investigate the role of the C66-containing surface in MPC formation, we constructed the dinB(C66A) derivative. We found that DinB(C66A) copurifies with its interacting partners, RecA and UmuD, to a greater extent than DinB. Notably, copurification of RecA with DinB is somewhat enhanced in the absence of UmuD and is further increased for DinB(C66A). In vitro pulldown assays also indicate that DinB(C66A) binds RecA and UmuD better than DinB. We note that the increased affinity of DinB(C66A) for UmuD is RecA dependent. Thus, the C66-containing binding surface appears to be critical to modulate interaction with UmuD, and particularly with RecA. Expression of dinB(C66A) from the chromosome resulted in detectable differences in dinB-dependent lesion bypass fidelity and homologous recombination. Study of this DinB derivative has revealed a key surface on DinB, which appears to modulate the strength of MPC binding, and has suggested a binding order of RecA and UmuD to DinB. These findings will ultimately permit the manipulation of these enzymes to deter bacterial antibiotic resistance acquisition and to gain insights into cancer development in humans.


Assuntos
DNA Polimerase beta/biossíntese , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Recombinases Rec A/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , DNA Polimerase beta/metabolismo , DNA Polimerase Dirigida por DNA/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Recombinases Rec A/genética , Alinhamento de Sequência
3.
Sci Transl Med ; 14(645): eabn0402, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35584229

RESUMO

Cystine-dense peptides (CDPs) are a miniprotein class that can drug difficult targets with high affinity and low immunogenicity. Tools for their design, however, are not as developed as those for small-molecule and antibody drugs. CDPs have diverse taxonomic origins, but structural characterization is lacking. Here, we adapted Iterative Threading ASSEmbly Refinement (I-TASSER) and Rosetta protein modeling software for structural prediction of 4298 CDP scaffolds and performed in silico prescreening for CDP binders to targets of interest. Mammalian display screening of a library of docking-enriched, methionine and tyrosine scanned (DEMYS) CDPs against PD-L1 yielded binders from four distinct CDP scaffolds. One was affinity-matured, and cocrystallography yielded a high-affinity (KD = 202 pM) PD-L1-binding CDP that competes with PD-1 for PD-L1 binding. Its subsequent incorporation into a CD3-binding bispecific T cell engager produced a molecule with pM-range in vitro T cell killing potency and which substantially extends survival in two different xenograft tumor-bearing mouse models. Both in vitro and in vivo, the CDP-incorporating bispecific molecule outperformed a comparator antibody-based molecule. This CDP modeling and DEMYS technique can accelerate CDP therapeutic development.


Assuntos
Anticorpos Biespecíficos , Linfócitos T , Animais , Humanos , Camundongos , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Antígeno B7-H1 , Complexo CD3 , Cistina , Modelos Animais de Doenças , Mamíferos , Peptídeos
4.
Cancers (Basel) ; 13(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34885074

RESUMO

Advances in the treatment of pediatric AML have been modest over the past four decades. Despite maximally intensive therapy, approximately 40% of patients will relapse. Novel targeted therapies are needed to improve outcomes. We identified mesothelin (MSLN), a well-validated target overexpressed in some adult malignancies, to be highly expressed on the leukemic cell surface in a subset of pediatric AML patients. The lack of expression on normal bone marrow cells makes MSLN a viable target for immunotherapies such as T-cell engaging bispecific antibodies (BsAbs) that combine two distinct antibody-variable regions into a single molecule targeting a cancer-specific antigen and the T-cell co-receptor CD3. Using antibody single-chain variable region (scFv) sequences derived from amatuximab-recognizing MSLN, and from either blinatumomab or AMG330 targeting CD3, we engineered and expressed two MSLN/CD3-targeting BsAbs: MSLNAMA-CD3L2K and MSLNAMA-CD3AMG, respectively. Both BsAbs promoted T-cell activation and reduced leukemic burden in MV4;11:MSLN xenografted mice, but not in those transplanted with MSLN-negative parental MV4;11 cells. MSLNAMA-CD3AMG induced complete remission in NTPL-146 and DF-5 patient-derived xenograft models. These data validate the in vivo efficacy and specificity of MSLN-targeting BsAbs. Because prior MSLN-directed therapies appeared safe in humans, MSLN-targeting BsAbs could be ideal immunotherapies for MSLN-positive pediatric AML patients.

5.
Front Microbiol ; 8: 288, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28298904

RESUMO

In Escherichia coli the highly conserved DNA damage regulated dinB gene encodes DNA Polymerase IV (DinB), an error prone specialized DNA polymerase with a central role in stress-induced mutagenesis. Since DinB is the DNA polymerase with the highest intracellular concentrations upon induction of the SOS response, further regulation must exist to maintain genomic stability. Remarkably, we find that DinB DNA synthesis is inherently poor when using an RNA primer compared to a DNA primer, while high fidelity DNA polymerases are known to have no primer preference. Moreover, we show that the poor DNA synthesis from an RNA primer is conserved in DNA polymerase Kappa, the human DinB homolog. The activity of DinB is modulated by interactions with several other proteins, one of which is the equally evolutionarily conserved recombinase RecA. This interaction is known to positively affect DinB's fidelity on damaged templates. We find that upon interaction with RecA, DinB shows a significant reduction in DNA synthesis when using an RNA primer. Furthermore, with DinB or DinB:RecA a robust pause, sequence and lesion independent, occurs only when RNA is used as a primer. The robust pause is likely to result in abortive DNA synthesis when RNA is the primer. These data suggest a novel mechanism to prevent DinB synthesis when it is not needed despite its high concentrations, thus protecting genome stability.

6.
PLoS One ; 6(5): e19944, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21614131

RESUMO

DinB (DNA Pol IV) is a translesion (TLS) DNA polymerase, which inserts a nucleotide opposite an otherwise replication-stalling N(2)-dG lesion in vitro, and confers resistance to nitrofurazone (NFZ), a compound that forms these lesions in vivo. DinB is also known to be part of the cellular response to alkylation DNA damage. Yet it is not known if DinB active site residues, in addition to aminoacids involved in DNA synthesis, are critical in alkylation lesion bypass. It is also unclear which active site aminoacids, if any, might modulate DinB's bypass fidelity of distinct lesions. Here we report that along with the classical catalytic residues, an active site "aromatic triad", namely residues F12, F13, and Y79, is critical for cell survival in the presence of the alkylating agent methyl methanesulfonate (MMS). Strains expressing dinB alleles with single point mutations in the aromatic triad survive poorly in MMS. Remarkably, these strains show fewer MMS- than NFZ-induced mutants, suggesting that the aromatic triad, in addition to its role in TLS, modulates DinB's accuracy in bypassing distinct lesions. The high bypass fidelity of prevalent alkylation lesions is evident even when the DinB active site performs error-prone NFZ-induced lesion bypass. The analyses carried out with the active site aromatic triad suggest that the DinB active site residues are poised to proficiently bypass distinctive DNA lesions, yet they are also malleable so that the accuracy of the bypass is lesion-dependent.


Assuntos
Aminoácidos/metabolismo , Domínio Catalítico , Dano ao DNA , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Viabilidade Microbiana , Mutagênese/genética , Alelos , Motivos de Aminoácidos , Biocatálise/efeitos dos fármacos , DNA Polimerase beta/química , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Genes Bacterianos/genética , Humanos , Metanossulfonato de Metila/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Mutagênese/efeitos dos fármacos , Mutação/genética , Nitrofurazona/farmacologia , Fenótipo , Resposta SOS em Genética/efeitos dos fármacos , Resposta SOS em Genética/genética
7.
Cell Cycle ; 7(9): 1246-53, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18418055

RESUMO

Bipolar spindle assembly is essential to genomic stability in dividing cells. Centrosomes or spindle pole bodies duplicated earlier at G(1)/S remain adjacent until triggered at mitotic onset to become bipolar. Pole reorientation is stabilized by microtubule interdigitation but mechanistic details for bipolarity remain incomplete. To investigate the contribution of spindle pole microtubule organizing center (MTOC) proteins in bipolarity, we applied genetic, structural and molecular biochemical analysis along with timelapse microscopy. Spindle formation was followed by an in vivo growth assay with the conditional allele cut7-22(ts), encoding fission yeast mitotic Kinesin-5, essential for bipolarity. By analysis of double and triple mutant strains of MTOC alleles and cut7-22(ts) we found that stabilized microtubules or increased bundling can rescue cut7-22(ts) associated bipolarity defects. These changes to microtubule dynamics and organization occurred through two surface domains on gamma-tubulin, a helix 11 domain and an adjacent site for binding MTOC protein Alp4. We demonstrate that Kinesin-14 Pkl1, known to oppose bipolarity, can bind to gamma-tubulin at helix 11 and that mutation of either of two conserved residues in helix 11 can impair Kinesin-14 binding. Altering the Alp4/gamma-tubulin interaction, conserved residues in helix 11 or deletion of pkl1 each are sufficient to rescue bipolarity in our cut7-22(ts) strain. Our findings provide novel insights into regulation of the bipolar mechanism through the MTOC complex.


Assuntos
Polaridade Celular/fisiologia , Centro Organizador dos Microtúbulos/metabolismo , Mitose/fisiologia , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Fuso Acromático/metabolismo , Sítios de Ligação/fisiologia , Sequência Conservada/genética , Cinesinas/genética , Cinesinas/metabolismo , Substâncias Macromoleculares/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/ultraestrutura , Mutação/genética , Ligação Proteica/genética , Estrutura Secundária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Schizosaccharomyces/genética , Schizosaccharomyces/ultraestrutura , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Fuso Acromático/ultraestrutura , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA