Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(15): e2320505121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568977

RESUMO

The presynaptic SNARE-complex regulator complexin (Cplx) enhances the fusogenicity of primed synaptic vesicles (SVs). Consequently, Cplx deletion impairs action potential-evoked transmitter release. Conversely, though, Cplx loss enhances spontaneous and delayed asynchronous release at certain synapse types. Using electrophysiology and kinetic modeling, we show that such seemingly contradictory transmitter release phenotypes seen upon Cplx deletion can be explained by an additional of Cplx in the control of SV priming, where its ablation facilitates the generation of a "faulty" SV fusion apparatus. Supporting this notion, a sequential two-step priming scheme, featuring reduced vesicle fusogenicity and increased transition rates into the faulty primed state, reproduces all aberrations of transmitter release modes and short-term synaptic plasticity seen upon Cplx loss. Accordingly, we propose a dual presynaptic function for the SNARE-complex interactor Cplx, one as a "checkpoint" protein that guarantees the proper assembly of the fusion machinery during vesicle priming, and one in boosting vesicle fusogenicity.


Assuntos
Sinapses , Vesículas Sinápticas , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Potenciais de Ação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Transmissão Sináptica/fisiologia
2.
Proc Natl Acad Sci U S A ; 119(34): e2207987119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969787

RESUMO

Glutamatergic synapses display variable strength and diverse short-term plasticity (STP), even for a given type of connection. Using nonnegative tensor factorization and conventional state modeling, we demonstrate that a kinetic scheme consisting of two sequential and reversible steps of release-machinery assembly and a final step of synaptic vesicle (SV) fusion reproduces STP and its diversity among synapses. Analyzing transmission at the calyx of Held synapses reveals that differences in synaptic strength and STP are not primarily caused by variable fusion probability (pfusion) but are determined by the fraction of docked synaptic vesicles equipped with a mature release machinery. Our simulations show that traditional quantal analysis methods do not necessarily report pfusion of SVs with a mature release machinery but reflect both pfusion and the distribution between mature and immature priming states at rest. Thus, the approach holds promise for a better mechanistic dissection of the roles of presynaptic proteins in the sequence of SV docking, two-step priming, and fusion. It suggests a mechanism for activity-induced redistribution of synaptic efficacy.


Assuntos
Fusão de Membrana , Plasticidade Neuronal , Sinapses , Vesículas Sinápticas , Exocitose , Sinapses/fisiologia , Transmissão Sináptica , Vesículas Sinápticas/fisiologia
3.
Nat Mater ; 22(9): 1114-1120, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37386064

RESUMO

A common obstacle of many organic semiconductors is that they show highly unipolar charge transport. This unipolarity is caused by trapping of either electrons or holes by extrinsic impurities, such as water or oxygen. For devices that benefit from balanced transport, such as organic light-emitting diodes, organic solar cells and organic ambipolar transistors, the energy levels of the organic semiconductors are ideally situated within an energetic window with a width of 2.5 eV where charge trapping is strongly suppressed. However, for semiconductors with a band gap larger than this window, as used in blue-emitting organic light-emitting diodes, the removal or disabling of charge traps poses a longstanding challenge. Here we demonstrate a molecular strategy where the highest occupied molecular orbital and lowest unoccupied molecular orbital are spatially separated on different parts of the molecules. By tuning their stacking by modification of the chemical structure, the lowest unoccupied molecular orbitals can be spatially protected from impurities that cause electron trapping, increasing the electron current by orders of magnitude. In this way, the trap-free window can be substantially broadened, opening a path towards large band gap organic semiconductors with balanced and trap-free transport.

4.
Angew Chem Int Ed Engl ; : e202407702, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38751355

RESUMO

The current bottleneck in the development of efficient photocatalysts for hydrogen evolution is the limited availability of high-performance acceptor units. Over the past nine years, dibenzo[b,d]thiophene sulfone (DBS) has been the preferred choice for the acceptor unit. Despite extensive exploration of alternative structures as potential replacements for DBS, a superior substitute remains elusive. In this study, a symmetry-breaking strategy was employed on DBS to develop a novel acceptor unit, BBTT-1SO. The asymmetric structure of BBTT-1SO proved beneficial for increasing multiple moment and polarizability. BBTT-1SO-containing polymers showed higher efficiencies for hydrogen evolution than their DBS-containing counterparts by up to 166 %. PBBTT-1SO exhibited an excellent hydrogen evolution rate (HER) of 222.03 mmol g-1 h-1 and an apparent quantum yield of 27.5 % at 500 nm. Transient spectroscopic studies indicated that the BBTT-1SO-based polymers facilitated electron polaron formation, which explains their superior HERs. PBBTT-1SO also showed 14 % higher HER in natural seawater splitting than that in deionized water splitting. Molecular dynamics simulations highlighted the enhanced water-PBBTT-1SO polymer interactions in salt-containing solutions. This study presents a pioneering example of a substitute acceptor unit for DBS in the construction of high-performance photocatalysts for hydrogen evolution.

5.
Small ; 19(42): e2302682, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37322304

RESUMO

Conjugated polymers (CPs) have recently gained increasing attention as photocatalysts for sunlight-driven hydrogen evolution. However, they suffer from insufficient electron output sites and poor solubility in organic solvents, severely limiting their photocatalytic performance and applicability. Herein, solution-processable all-acceptor (A1 -A2 )-type CPs based on sulfide-oxidized ladder-type heteroarene are synthesized. A1 -A2 -type CPs showed upsurging efficiency improvements by two to three orders of magnitude, compared to their donor-acceptor -type CP counterparts. Furthermore, by seawater splitting, PBDTTTSOS exhibited an apparent quantum yield of 18.9% to 14.8% at 500 to 550 nm. More importantly, PBDTTTSOS achieved an excellent hydrogen evolution rate of 35.7 mmol h-1  g-1 and 150.7 mmol h-1  m-2 in the thin-film state, which is among the highest efficiencies in thin film polymer photocatalysts to date. This work provides a novel strategy for designing polymer photocatalysts with high efficiency and broad applicability.

6.
J Chem Phys ; 159(2)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37428064

RESUMO

By considering only one electronic state per molecule, charge transport models of molecular solids neglect intramolecular charge transfer. This approximation excludes materials with quasi-degenerate spatially separated frontier orbitals, such as non-fullerene acceptors (NFAs) and symmetric thermally activated delayed fluorescence emitters. By analyzing the electronic structure of room-temperature molecular conformers of a prototypical NFA, ITIC-4F, we conclude that the electron is localized on one of the two acceptor blocks with the mean intramolecular transfer integral of 120 meV, which is comparable with intermolecular couplings. Therefore, the minimal basis for acceptor-donor-acceptor (A-D-A) molecules consists of two molecular orbitals localized on the acceptor blocks. This basis is robust even with respect to geometry distortions in an amorphous solid, in contrast to the basis of two lowest unoccupied canonical molecular orbitals withstanding only thermal fluctuations in a crystal. The charge carrier mobility can be underestimated by a factor of two when using single site approximation for A-D-A molecules in their typical crystalline packings.

7.
Chemistry ; 27(10): 3348-3360, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32894599

RESUMO

The use of crystal engineering to control the supramolecular arrangement of π-conjugated molecules in the solid-state is of considerable interest for the development of novel organic electronic materials. In this study, we investigated the effect of combining of two types of supramolecular interaction with different geometric requirements, amide hydrogen bonding and π-interactions, on the π-overlap between calamitic π-conjugated cores. To this end, we prepared two series of bithiophene diesters and diamides with methylene, ethylene, or propylene spacers between the bithiophene core and the functional groups in their terminal substituents. The hydrogen-bonded bithiophene diamides showed significantly denser packing of the bithiophene cores than the diesters and other known α,ω-disubstituted bithiophenes. The bithiophene packing density reach a maximum in the bithiophene diamide with an ethylene spacer, which had the smallest longitudinal bithiophene displacement and infinite 1D arrays of electronically conjugated, parallel, and almost linear N-H⋅⋅⋅O=C hydrogen bonds. The synergistic hydrogen bonding and π-interactions were attributed to the favorable conformation mechanics of the ethylene spacer and resulted in H-type spectroscopic aggregates in solid-state absorption spectroscopy. These results demonstrate that the optoelectronic properties of π-conjugated materials in the solid-state may be tailored systematically by side-chain engineering, and hence that this approach has significant potential for the design of organic and polymer semiconductors.

8.
J Am Chem Soc ; 142(4): 1792-1800, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31865703

RESUMO

Four spirobisacridine (SBA) hole-transporting materials were synthesized and employed in perovskite solar cells (PSCs). The molecules bear electronically inert alkyl chains of different length and bulkiness, attached to in-plane N atoms of nearly orthogonal spiro-connected acridines. Di-p-methoxyphenylamine (DMPA) substituents tailored to the central SBA-platform define electronic properties of the materials mimicking the structure of the benchmark 2,2',7,7'-tetrakis(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (spiro-MeOTAD), while the alkyl pending groups affect molecular packing in thin films and affect the long-term performance of PSCs. Devices with SBA-based hole transporting layers (HTL) attain efficiencies on par with spiro-MeOTAD. More importantly, solar cells with the new HTMs are hysteresis-free and demonstrate good operational stability, despite being doped as spiro-MeOTAD. The best performing MeSBA-DMPA retained 88% of the initial efficiency after a 1000 h aging test under constant illumination. The results clearly demonstrate that SBA-based compounds are potent candidates for a design of new HTMs for PSCs with improved longevity.

9.
Phys Chem Chem Phys ; 22(21): 11881-11890, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32436535

RESUMO

We present a fragment-based decomposition analysis tool (FB-REDA) for the reorganisation energy (λ). This tool delivers insights on how to rationally design low-λ organic semiconductors. The contribution of the fragment vibrational modes to the reorganization energy is exploited to identity the individual contributions of the molecular building blocks. The usefulness of the approach is demonstrated by offering three strategies to reduce the reorganization energy of a promising dopant-free hole transport material (TPA1PM, λ = 213 meV). A reduction of nearly 50% (TPD3PM, λ = 108 meV) is achieved. The proposed design principles are likely transferable to other organic semiconductors exploiting common molecular building blocks.

10.
J Phys Chem A ; 124(50): 10624-10634, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33291873

RESUMO

We present a fragment-based decomposition analysis tool (FB-ECDA) for the electronic coupling of charge transfer processes. This tool provides insight on the sophisticated relationship between molecular packing, electronic coupling, and the molecular transport network present in organic amorphous semiconductors. On the basis of atomic orbitals, FB-ECDA decomposes the total electronic coupling into individual electronic coupling terms arising from each molecular building blocks in a straightforward manner. The usefulness of this approach is demonstrated by revealing the structure-packing-property relationships for two series of molecules differing by the number of arm substituents and acene core length. Overall, we provide insight on the design of organic semiconductors exhibiting efficient charge transport network through achieving a subtle balance between molecular packing and electronic structure. We expect FB-ECDA to be a valuable tool for understanding sophisticated charge transfer processes in amorphous systems and guiding the rational design of organic semiconductors.

11.
Angew Chem Int Ed Engl ; 59(35): 14903-14909, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32441469

RESUMO

The mechanism of aggregation-induced emission, which overcomes the common aggregation-caused quenching problem in organic optoelectronics, is revealed by monitoring the real time structural evolution and dynamics of electronic excited state with frequency and polarization resolved ultrafast UV/IR spectroscopy and theoretical calculations. The formation of Woodward-Hoffmann cyclic intermediates upon ultraviolet excitation is observed in dilute solutions of tetraphenylethylene and its derivatives but not in their respective solid. The ultrafast cyclization provides an efficient nonradiative relaxation pathway through crossing a conical intersection. Without such a reaction mechanism, the electronic excitation is preserved in the molecular solids and the molecule fluoresces efficiently, aided by the very slow intermolecular charge and energy transfers due to the well separated molecular packing arrangement. The mechanisms can be general for tuning the properties of chromophores in different phases for various important applications.

12.
Phys Chem Chem Phys ; 21(18): 9026-9035, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30869714

RESUMO

A recent implementation of time-dependent tight-binding density functional theory is employed in excited state molecular dynamics for the investigation of the fluorescence quenching mechanism in 3 prototypical aggregation-induced emission systems. An assessment of the accuracy of the electronic structure method is done by comparison with previous theoretical work while dynamics simulations were extended to the condensed phase to obtain excited state lifetimes comparable to experiment. A thorough investigation is done on tetraphenylethylene in order to resolve the on-going debate on the role of specific deactivation mechanisms. Both gas phase and solvent dynamics were computed for fulvene and silole derivatives.

13.
J Am Chem Soc ; 140(48): 16370-16386, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30395466

RESUMO

The performance and key electronic properties of molecular organic semiconductors are dictated by the interplay between the chemistry of the molecular core and the intermolecular factors of which manipulation has inspired both experimentalists and theorists. This Perspective presents major computational challenges and modern methodological strategies to advance the field. The discussion ranges from insights and design principles at the quantum chemical level, in-depth atomistic modeling based on multiscale protocols, morphological prediction and characterization as well as energy-property maps involving data-driven analysis. A personal overview of the past achievements and future direction is also provided.

14.
J Physiol ; 595(10): 3219-3236, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27957749

RESUMO

KEY POINTS: The intracellular concentration of free calcium ions ([Ca2+ ]i ) in a nerve terminal controls both transmitter release and synaptic plasticity. The rapid triggering of transmitter release depends on the local micro- or nanodomain of highly elevated [Ca2+ ]i in the vicinity of open voltage-gated Ca2+ channels, whereas short-term synaptic plasticity is often controlled by global changes in residual [Ca2+ ]i , averaged over the whole nerve terminal volume. Here we describe dynamic changes of such global [Ca2+ ]i in the calyx of Held - a giant mammalian glutamatergic nerve terminal, which is particularly suited for biophysical studies. We provide quantitative data on Ca2+ inflow, Ca2+ buffering and Ca2+ clearance. These data allow us to predict changes in [Ca2+ ]i in the nerve terminal in response to a wide range of stimulus protocols at high temporal resolution and provide a basis for the modelling of short-term plasticity of glutamatergic synapses. ABSTRACT: Many aspects of short-term synaptic plasticity (STP) are controlled by relatively slow changes in the presynaptic intracellular concentration of free calcium ions ([Ca2+ ]i ) that occur in the time range of a few milliseconds to several seconds. In nerve terminals, [Ca2+ ]i equilibrates diffusionally during such slow changes, such that the globally measured, residual [Ca2+ ]i that persists after the collapse of local domains is often the appropriate parameter governing STP. Here, we study activity-dependent dynamic changes in global [Ca2+ ]i at the rat calyx of Held nerve terminal in acute brainstem slices using patch-clamp and microfluorimetry. We use low concentrations of a low-affinity Ca2+ indicator dye (100 µm Fura-6F) in order not to overwhelm endogenous Ca2+ buffers. We first study voltage-clamped terminals, dialysed with pipette solutions containing minimal amounts of Ca2+ buffers, to determine Ca2+ binding properties of endogenous fixed buffers as well as the mechanisms of Ca2+ clearance. Subsequently, we use pipette solutions including 500 µm EGTA to determine the Ca2+ binding kinetics of this chelator. We provide a formalism and parameters that allow us to predict [Ca2+ ]i changes in calyx nerve terminals in response to a wide range of stimulus protocols. Unexpectedly, the Ca2+ affinity of EGTA under the conditions of our measurements was substantially lower (KD  = 543 ± 51 nm) than measured in vitro, mainly as a consequence of a higher than previously assumed dissociation rate constant (2.38 ± 0.20 s-1 ), which we need to postulate in order to model the measured presynaptic [Ca2+ ]i transients.


Assuntos
Tronco Encefálico/fisiologia , Cálcio/fisiologia , Terminações Nervosas/fisiologia , Animais , Feminino , Técnicas In Vitro , Masculino , Técnicas de Patch-Clamp , Ratos Wistar
15.
J Physiol ; 592(22): 4863-75, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25194050

RESUMO

Significantly more Ca(2+) influx is required for eliciting release of neurotransmitter during whole cell patch clamp recording in the Calyx of Held, when gluconate with 3 mm free ATP is used as pipette filling solution, as compared to a methanesulfonate-based solution with excess Mg(2+). This reduction in efficiency of Ca(2+) in eliciting release is due to low-affinity Ca(2+) binding of both gluconate and ATP(2-) anions. To study these effects we developed a simple fluorimeteric titration procedure, which reports the dissociation constant, KD, of a given Ca(2+) indicator dye, multiplied by 1 plus the sum of Ca(2+) binding ratios of any anions, which act as low-affinity Ca(2+) ligands. For solutions without Ca(2+) binding anions we find KD values for Fura2FF ranging from 11.5 ± 1.7 to 15.6 ± 7.47 µm depending on the dominant anion used. For Fura6F and KCl-based solutions we find KD = 17.8 ± 1.3 µm. For solutions with gluconate as the main anion and for solutions that contain nucleotides, such as ATP and GTP, we find much higher values for the product. Assuming that the KD of the indicator dye is equal to that of KCl-based solutions we calculate the summed Ca(2+) binding ratios and find a value of 3.55 for a solution containing 100 mm potassium gluconate and 4 mm ATP. Gluconate contributes a value of 1.75 to this number, while the contribution of ATP depends strongly on the presence of Mg(2+) and varies from 0.8 (with excess Mg(2+)) to 13.8 (in the presence of 3 mm free ATP). Methanesulfonate has negligible Ca(2+) binding capacity. These results explain the reduced efficiency of Ca(2+) influx in the presence of gluconate or nucleotides, as these anions are expected to intercept Ca(2+) ions at short distance.


Assuntos
Trifosfato de Adenosina/farmacologia , Cálcio/farmacologia , Fluorometria/métodos , Gluconatos/farmacologia , Guanosina Trifosfato/farmacologia , Sinapses/metabolismo , Algoritmos , Animais , Soluções Tampão , Células Cultivadas , Feminino , Corantes Fluorescentes/farmacocinética , Magnésio/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Ratos , Ratos Wistar , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Titulometria/métodos
16.
Chem Asian J ; 19(6): e202300955, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38332680

RESUMO

Activation of inert CO2 molecules for the reverse water gas shift (RWGS) reaction is tackled by incorporating magnesium oxide as a support material for copper, forming a Cu/MgO supported catalyst. The RWGS performance is greatly improved when compared with pure Cu or carbon supported Cu (Cu/C). Operating under a weight hourly space velocity (WHSV) of 300,000 mL ⋅ g-1 ⋅ h-1, the Cu/MgO catalyst demonstrates high activity, maintaining over 70 % equilibrium conversion and nearly 100 % CO selectivity in a temperature range of 300-600 °C. In contrast, both Cu/C and commercial Cu, even at ten-times lower WHSV, can only achieve up to 40 % of the equilibrium conversion and quickly deactivated due to sintering. Based on the studies of in-situ temperature resolved infrared spectroscopy and temperature programmed desorption, the improved RWGS performance is attributed to the unique adsorption behavior of CO2 on Cu/MgO. Density functional theory studies provides a plausible explanation from a surface reaction perspective and reveals the spill-over property of CO2 from MgO to Cu being critical.

17.
Nat Commun ; 15(1): 707, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267492

RESUMO

Designing an organic polymer photocatalyst for efficient hydrogen evolution with visible and near-infrared (NIR) light activity is still a major challenge. Unlike the common behavior of gradually increasing the charge recombination while shrinking the bandgap, we present here a series of polymer nanoparticles (Pdots) based on ITIC and BTIC units with different π-linkers between the acceptor-donor-acceptor (A-D-A) repeated moieties of the polymer. These polymers act as an efficient single polymer photocatalyst for H2 evolution under both visible and NIR light, without combining or hybridizing with other materials. Importantly, the difluorothiophene (ThF) π-linker facilitates the charge transfer between acceptors of different repeated moieties (A-D-A-(π-Linker)-A-D-A), leading to the enhancement of charge separation between D and A. As a result, the PITIC-ThF Pdots exhibit superior hydrogen evolution rates of 279 µmol/h and 20.5 µmol/h with visible (>420 nm) and NIR (>780 nm) light irradiation, respectively. Furthermore, PITIC-ThF Pdots exhibit a promising apparent quantum yield (AQY) at 700 nm (4.76%).

18.
J Neurosci ; 32(4): 1261-72, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22279211

RESUMO

Voltage-gated Ca2+ channels (VGCCs) of the P/Q-type, which are expressed at a majority of mammalian nerve terminals, show two types of Ca2+-dependent feedback regulation-inactivation (CDI) and facilitation (CDF). Because of the nonlinear relationship between Ca2+ influx and transmitter release, CDI and CDF are powerful regulators of synaptic strength. To what extent VGCCs inactivate or facilitate during spike trains depends on the dynamics of free Ca2+ ([Ca2+]i) and the Ca2+ sensitivity of CDI and CDF, which has not been determined in nerve terminals. In this report, we took advantage of the large size of a rat auditory glutamatergic synapse--the calyx of Held--and combined voltage-clamp recordings of presynaptic Ca2+ currents (ICa(V)) with UV-light flash-induced Ca2+ uncaging and presynaptic Ca2+ imaging to study the Ca2+ requirements for CDI and CDF. We find that nearly half of the presynaptic VGCCs inactivate during 100 ms voltage steps and require several seconds to recover. This inactivation is caused neither by depletion of Ca2+ ions from the synaptic cleft nor by metabotropic feedback inhibition, because it is resistant to blockade of metabotropic and ionotropic glutamate receptors. Facilitation of ICa(V) induced by repetitive depolarizations or preconditioning voltage steps decays within tens of milliseconds. Since Ca2+ buffers only weakly affect CDI and CDF, we conclude that the Ca2+ sensors are closely associated with the channel. CDI and CDF can be induced by intracellular photo release of Ca2+ resulting in [Ca2+]i elevations in the low micromolar range, implying a surprisingly high affinity of the Ca2+ sensors.


Assuntos
Canais de Cálcio Tipo P/metabolismo , Canais de Cálcio Tipo Q/metabolismo , Cálcio/antagonistas & inibidores , Cálcio/fisiologia , Glutamatos/fisiologia , Líquido Intracelular/fisiologia , Inibição Neural/fisiologia , Terminações Pré-Sinápticas/metabolismo , Animais , Animais Recém-Nascidos , Canais de Cálcio Tipo P/fisiologia , Canais de Cálcio Tipo Q/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Masculino , Técnicas de Cultura de Órgãos , Terminações Pré-Sinápticas/fisiologia , Ratos , Ratos Wistar
19.
Nat Commun ; 14(1): 6524, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845260

RESUMO

Catalytic hydrogenolysis is a promising approach to transform waste plastic into valuable chemicals. However, the transformation of N-containing polymers, such as polyamides (i.e. nylon), remains under-investigated, particularly by heterogeneous catalysis. Here, we demonstrate the hydrogenolysis of various polyamides catalysed by platinum-group metal nanoparticles supported on CeO2. Ru/CeO2 and Pt/CeO2 are both highly active but display different selectivity; Ru/CeO2 is selective for the conversion of all polyamides into water, ammonia, and methane, whereas Pt/CeO2 yields hydrocarbons retaining the carbon backbone of the parent polyamide. Density functional theory computations illustrate that Pt nanoparticles require higher activation energy for carbon-carbon bond cleavage than Ru nanoparticles, rationalising the observed selectivity. The high activity and product selectivity of both catalysts was maintained when converting real-world polyamide products, such as fishing net. This study provides a mechanistic basis for heterogeneously catalysed polyamide hydrogenolysis, and a new approach to the valorisation of polyamide containing waste.

20.
Sci Adv ; 9(19): eadf9931, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37163597

RESUMO

High-entropy alloy (HEA) nanocrystals have attracted extensive attention in catalysis. However, there are no effective strategies for synthesizing them in a controllable and predictable manner. With quinary HEA nanocrystals made of platinum-group metals as an example, we demonstrate that their structures with spatial compositions can be predicted by quantitatively knowing the reduction kinetics of metal precursors and entropy of mixing in the nanocrystals under dropwise addition of the mixing five-metal precursor solution. The time to reach a steady state for each precursor plays a pivotal role in determining the structures of HEA nanocrystals with homogeneous alloy and core-shell features. Compared to the commercial platinum/carbon and phase-separated counterparts, the dendritic HEA nanocrystals with a defect-rich surface show substantial enhancement in catalytic activity and durability toward both hydrogen evolution and oxidation. This quantitative study will lead to a paradigm shift in the design of HEA nanocrystals, pushing away from the trial-and-error approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA