RESUMO
Tetraceno[2,3-b]thiophene is regarded as a strong candidate for singlet fission-based solar cell applications due to its mixed characteristics of tetracene and pentacene that balance exothermicity and triplet energy. An electronically weakly coupled tetraceno[2,3-b]thiophene dimer (Et2Si(TIPSTT)2) with a single silicon atom bridge has been synthesized, providing a new platform to investigate the singlet fission mechanism involving the two acene chromophores. We study the excited state dynamics of Et2Si(TIPSTT)2 by monitoring the evolution of multiexciton coupled triplet states, 1TT to 5TT to 3TT to T1 + S0, upon photoexcitation with transient absorption, temperature-dependent transient absorption, and transient/pulsed electron paramagnetic resonance spectroscopies. We find that the photoexcited singlet lifetime is 107 ps, with 90% evolving to form the TT state, and the complicated evolution between the multiexciton states is unraveled, which can be an important reference for future efforts toward tetraceno[2,3-b]thiophene-based singlet fission solar cells.
RESUMO
Hepatocellular carcinoma is one of the most common cancer types worldwide. In cases of advanced-stage disease, sorafenib is considered the treatment of choice. However, resistance to sorafenib remains a major obstacle for effective clinical application. Based on integrated phosphoproteomic and The Cancer Genome Atlas (TCGA) data, we identified a transcription factor, Y-box binding protein-1 (YB-1), with elevated phosphorylation of Ser102 in sorafenib-resistant HuH-7R cells. Phosphoinositide-3-kinase (PI3K) and protein kinase B (AKT) were activated by sorafenib, which, in turn, increased the phosphorylation level of YB-1. In functional analyses, knockdown of YB-1 led to decreased cell migration and invasion in vitro. At the molecular level, inhibition of YB-1 induced suppression of zinc-finger protein SNAI1 (Snail), twist-related protein 1 (Twist1), zinc-finger E-box-binding homeobox 1 (Zeb1), matrix metalloproteinase-2 (MMP-2) and vimentin levels, implying a role of YB-1 in the epithelial-mesenchymal transition (EMT) process in HuH-7R cells. Additionally, YB-1 contributes to morphological alterations resulting from F-actin rearrangement through Cdc42 activation. Mutation analyses revealed that phosphorylation at S102 affects the migratory and invasive potential of HuH-7R cells. Our collective findings suggest that sorafenib promotes YB-1 phosphorylation through effect from the EGFR/PI3K/AKT pathway, leading to significant enhancement of hepatocellular carcinoma (HCC) cell metastasis. Elucidation of the specific mechanisms of action of YB-1 may aid in the development of effective strategies to suppress metastasis and overcome resistance.
Assuntos
Carcinoma Hepatocelular/metabolismo , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Neoplasias Hepáticas/metabolismo , Sorafenibe/farmacologia , Proteína 1 de Ligação a Y-Box/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Invasividade Neoplásica , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Prognóstico , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Proteína 1 de Ligação a Y-Box/genética , Proteína cdc42 de Ligação ao GTP/metabolismoRESUMO
The kinetics of the reaction of anti-CH3CHOO with water vapor were investigated using transient UV absorption spectroscopy at temperatures from 288 to 328 K and 500 Torr. We found that both the water monomer and the water dimer react with anti-CH3CHOO. The rate coefficients of the reaction of the water monomer and dimer with anti-CH3CHOO at 298 K were determined to be (1.31 ± 0.26) × 10-14 cm3 s-1 and (4.40 ± 0.29) × 10-11 cm3 s-1, respectively. Furthermore, for the water dimer reaction, we observed very large negative temperature dependence with an activation energy of -12.17 ± 0.66 kcal mol-1. On the other hand, the monomer reaction showed minimal temperature dependence with nearly zero activation energy. At atmospherically relevant humidity, in opposition to previous experiments conducted for CH2OO in which water dimer reaction predominates at room temperature, for anti-CH3CHOO, the water monomer reaction can contribute significantly (â¼30% of the reaction with water vapor at relative humidity RH = 40% and 298 K). These results show that substitution of an alkyl group can greatly affect the reaction of Criegee intermediates with water vapor, especially changing the contributions of water monomer and dimer reactions.
RESUMO
In this study, we performed ab initio calculations and obtained the bimolecular rate coefficients for the CH2OO/CH3CHOO reactions with H2O/(H2O)2. The energies were calculated with QCISD(T)/CBS//B3LYP/6-311+G(2d,2p) and the partition functions were estimated with anharmonic vibrational corrections by using the second order perturbation theory. Furthermore, we directly measured the rate of the CH2OO reaction with water vapor at high temperatures (348 and 358 K) to reveal the contribution of the water monomer in the CH2OO decay kinetics. We found that the theoretical rate coefficients reproduce the experimental results of CH2OO for a wide range of temperatures. For anti- (syn-) CH3CHOO, we obtained theoretical rate coefficients of 1.60 × 10(-11) (2.56 × 10(-14)) and 3.40 × 10(-14) (1.98 × 10(-19)) cm(3) s(-1) for water dimer and monomer reactions at room temperature. From the detailed analysis of the quantum chemistry and approximations for the thermochemistry calculations, we conclude that our calculated values would be within a factor of 3 of the correct values. Furthermore, at [H2O] = 1 × 10(17) to 5 × 10(17) cm(-3), we estimate that the effective first-order rate coefficients for CH2OO, anti- and syn-CH3CHOO reactions with water vapor will be â¼10(3), â¼10(4), and â¼10(1) s(-1), respectively. Thereby, for Criegee intermediates with a hydrogen atom on the same side as the terminal oxygen atom, the reaction with water vapor will likely dominate the removal processes of these CIs in the atmosphere.
RESUMO
The multiexciton quintet state, 5TT, generated as a singlet fission intermediate in pairs of molecular chromophores, is a promising candidate as a qubit or qudit in future quantum information science schemes. In this work, we synthesize a pyrene-bridged parallel tetracene dimer, TPT, with an optimized interchromophore coupling strength to prevent the dissociation of 5TT to two decorrelated triplet (T1) states, which would contaminate the spin-state mixture. Long-lived and strongly spin-polarized pure 5TT state population is observed via transient absorption spectroscopy and transient/pulsed electron paramagnetic resonance spectroscopy, and its lifetime is estimated to be >35 µs, with the dephasing time (T2) for the 5TT-based qubit measured to be 726 ns at 10 K. Direct relaxation from 1TT to the ground state does diminish the overall excited state population, but the exclusive 5TT population at large enough persistent density for pulsed echo determination of spin coherence time is consistent with recent theoretical models that predict such behavior for strict parallel chromophore alignment and large exchange coupling.
RESUMO
Orexins regulate the reward-seeking pathway and also play a role in drug addiction. The aim of this study was an investigation of the changes in serum level of orexin-A as well as changes in the functional brain network in heroin use disorder (HUD) patients undergoing harm reduction therapy (HRT). Twenty-five HUD patients undergoing HRT that included methadone and buprenorphine, and 31 healthy control (HC) subjects, were enrolled for this study. Serum orexin-A levels and brain-derived neurotrophic factor were measured with assay kits. The functional brain network in HUD patients and HC was investigated and assessed using seed-based analysis and functional brain MRI scans. t Tested orexin-A levels were found to be significantly higher in HUD patients undergoing HRT than in HCs (P < .05). Analysis showed the functional activity of the right ventral anterior insula (RVAI) in HUD patients to be significantly lower than in HCs (P < .05, Family-Wise Error) corrected). In addition, the internetwork functional connectivity was significantly lower in the left nucleus accumbens and left dorsal anterior insula in the HUD subjects than in HCs (P < .05, Family-Wise Error corrected). In this study, no significant correlation between orexin-A levels and functional brain networks was found. However, the results suggest that HRT might increase orexin-A levels and decrease functional activity in RVAI in HUD patients.
Assuntos
Redução do Dano , Dependência de Heroína , Encéfalo/diagnóstico por imagem , Buprenorfina/uso terapêutico , Heroína , Dependência de Heroína/tratamento farmacológico , Dependência de Heroína/metabolismo , Humanos , Metadona/uso terapêutico , OrexinasRESUMO
Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder. Distributed dysconnectivity within both the default-mode network (DMN) and the salience network (SN) has been observed in ADHD. L-cystine may serve as a neuroprotective molecule and signaling pathway, as well as a biomarker of ADHD. The purpose of this study was to explore whether differential brain network connectivity is associated with peripheral L-cystine levels in ADHD patients. We recruited a total of 31 drug-naïve patients with ADHD (mean age: 10.4 years) and 29 healthy controls (mean age: 10.3 years) that underwent resting state functional magnetic resonance imaging scans. Functional connectomes were generated for each subject, and we examined the cross-sectional group difference in functional connectivity (FC) within and between DMN and SN. L-cystine plasma levels were determined using high-performance chemical isotope labeling (CIL)-based liquid chromatography-mass spectrometry (LC-MS). Compared to the control group, the ADHD group showed decreased FC of dorsal DMN (p = 0.031), as well as decreased FC of precuneus-post SN (p = 0.006) and ventral DMN-post SN (p = 0.001). The plasma L-cystine levels of the ADHD group were significantly higher than in the control group (p = 0.002). Furthermore, L-cystine levels were negatively correlated with FC of precuneus-post SN (r = -0.404, p = 0.045) and ventral DMN-post SN (r = -0.540, p = 0.007). The findings suggest that decreased synergies of DMN and SN may serve as neurobiomarkers for ADHD, while L-cystine may be involved in the pathophysiology of network dysconnectivity. Future studies on the molecular mechanism of the cystine-glutamate system in brain network connectivity are warranted.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Conectoma , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Criança , Estudos Transversais , Cistina , Rede de Modo Padrão , Humanos , Imageamento por Ressonância Magnética , Vias NeuraisRESUMO
The reaction of monolayer graphene with aryl diazonium salts is a popular approach for functionalizing graphene under ambient conditions. We here apply interference reflection microscopy (IRM), a label-free optical technique, to study the in situ reaction dynamics of the representative diazonium reaction of graphene with 4-nitrobenzenediazonium tetrafluoroborate (4-NBD) at high spatiotemporal resolution and further correlate results with atomic force microscopy, Raman spectroscopy, and infrared scattering scanning near-field optical microscopy. Interestingly, we find the reaction to be significantly promoted by a low (0.5 W/cm2) level of blue visible light, whereas at the same intensity level, red light has negligible effects on reaction rate. We further report rich spatial heterogeneities for the reaction, including enhanced reactivity at graphene edges and an unexpected flake-to-flake variation in reaction rate. Moreover, we demonstrate direct photopatterning for the 4-NBD functionalization, achieving 400 nm patterning resolution.
RESUMO
The kinetics of the reaction of CH2OO with water vapor was measured directly with UV absorption at temperatures from 283 to 324 K. The observed CH2OO decay rate is second order with respect to the H2O concentration, indicating water dimer participates in the reaction. The rate coefficient of the CH2OO reaction with water dimer can be described by an Arrhenius expression k(T) = A exp(-Ea/RT) with an activation energy of -8.1 ± 0.6 kcal mol(-1) and k(298 K) = (7.4 ± 0.6) × 10(-12) cm(3) s(-1). Theoretical calculations yield a large negative temperature dependence consistent with the experimental results. The temperature dependence increases the effective loss rate for CH2OO by a factor of ~2.5 at 278 K and decreases by a factor of ~2 at 313 K relative to 298 K, suggesting that temperature is important for determining the impact of Criegee intermediate reactions with water in the atmosphere.