Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Lett ; 576: 216411, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37757903

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is extremely malignant with limited treatment options. Deubiquitinases (DUBs), which cleave ubiquitin on substrates, can regulate tumor progression and are appealing therapeutic targets, but there are few related studies in PDAC. In our study, we screened the expression levels and prognostic value of USP family members based on published databases and selected USP10 as the potential interventional target in PDAC. IHC staining of the PDAC microarray revealed that USP10 expression was an adverse clinical feature of PDAC. USP10 promoted tumor growth both in vivo and in vitro in PDAC. Co-IP experiments revealed that USP10 directly interacts with PABPC1. Deubiquitination assays revealed that USP10 decreased the K27/29-linked ubiquitination level of the RRM2 domain of PABPC1. Deubiquitinated PABPC1 was able to couple more CLK2 mRNA and eIF4G1, which increased the translation efficiency. Replacing PABPC1 with a mutant that could not be ubiquitinated impaired USP10 knock-down-mediated tumor suppression in PDAC. Targeting USP10 significantly delayed the growth of cell-derived xenograft and patient-derived xenograft tumors. Collectively, our study first identified USP10 as the DUB of PABPC1 and provided a rationale for potential therapeutic options for PDAC with high USP10 expression.

2.
Cancer Lett ; 530: 142-155, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35077803

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) usually presents infrequent infiltration of T lymphocytes. The known immune-checkpoint inhibitors to date focus on activating T cells and manifest limited effectiveness in PDAC. SIGLEC15 was identified as a novel tumor-associated macrophage (TAM)-related immune-checkpoint in other cancer types, while its immunosuppressive role and clinical significance remained unclear in PDAC. In our study, SIGLEC15 presented immunosuppressive relevance in PDAC via bioinformatic analysis and expressed on TAM and PDAC cells. SIGLEC15+ TAM, rather than SIGLEC15+ PDAC cells or SIGLEC15- TAM, correlated with poor prognosis and immunosuppressive microenvironment in the PDAC microarray cohort. Compared with SIGLEC15- TAM, SIGLEC15+ TAM presented an M2-like phenotype that could be modulated by SIGLEC15 in a tumor cell-dependent manner. In mechanism, SIGLEC15 interacted with PDAC-expressed sialic acid, preferentially α-2, 3 sialic acids, to stimulate SYK phosphorylation in TAM, which further promoted its immunoregulatory cytokines and chemokines production. In vivo, SIGLEC15+ TAM also presented an M2-like phenotype, accelerated tumor growth, and facilitated immunosuppressive microenvironment, which was greatly abolished by SYK inhibitor. Our study highlighted a novel M2-promoting function of SIGLEC15 and strongly suggested SIGLEC15 as a potential immunotherapeutic target for PDAC.


Assuntos
Imunoglobulinas/genética , Proteínas de Membrana/genética , Neoplasias Pancreáticas/genética , Macrófagos Associados a Tumor/patologia , Animais , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Citocinas/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Terapia de Imunossupressão/métodos , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/patologia , Células THP-1 , Microambiente Tumoral/genética , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA