RESUMO
Antimonene, a promising conductor for next-generation 2D-based devices, has its contact resistance significantly influenced by the van der Waals (vdW) interaction within its heterostructure. In this study, we report the quantification of the vdW coupling between multilayer antimonene and bilayer MoS2 by ultrafast coherent vibration spectroscopy. By utilizing a femtosecond laser, we excited coherent acoustic vibrations in the multilayer-antimonene on substrate-supported bilayer MoS2, and the relative displacement at the vdW heterojunction was detected with the aid of bilayer MoS2. The photoexcited strain pulse generated in the multilayer-antimonene was observed as it transported to the bilayer MoS2, explaining the distortion at the beginning of the oscillation. By analyzing the thickness-dependent oscillation frequencies, we determine the effective vdW elastic constant between multilayer-antimonene and MoS2 to be (1.9 ± 0.2) × 1018 N/m3. This non-destructive optical technique offers a significant advance in the evaluation of vdW interactions at 2D metal-semiconductor interfaces.
RESUMO
We fabricate top-gate transistors on the three-layer molybdenum disulfide (MoS2) with three, two, and one layers in the source and drain regions using atomic layer etching (ALE). In the presence of ALE, the device at zero gate voltage can exhibit high and low levels of drain current under the forward and reverse gate bias, respectively. The hysteresis loop on the transfer curve of transistor indicates that two distinct charge states exist in the device within a range of gate bias. A long retention time of the charge is observed. Unlike conventional semiconductor memories with transistors and capacitors, the two-dimensional (2D) material itself plays two parts in the current conduction and charge storage. The persistent charge storage and memory operation of the multilayer MoS2transistors with thicknesses of a few atomic layer will further expand the device application of 2D materials with reduced linewidths.
RESUMO
Bottom-gate transistors with mono-layer MoS2channels and polycrystalline antimonene source/drain contact electrodes deposited at 75 °C are fabricated. Significant performance enhancement of field-effect mobility 11.80 cm2V-1·s-1and >106ON/OFF ratio are observed for the device. Increasing photocurrents are also observed for the MoS2transistor under light irradiation, which is attributed to the reduced carrier recombination at the metal/2D material interfaces. The results have demonstrated that besides the matching of work function values with the 2D material channel, the crystallinity of the contact electrodes is the other important parameter for the Ohmic contact formation of 2D material devices.
RESUMO
With additional precursor soaking, a thin Al2O3 dielectric layer can be grown on mono-layer MoS2 by using atomic layer deposition (ALD). Similar optical characteristics are observed before and after ALD growth for the mono-layer MoS2, which indicates that minor damage to the thin 2D material film is introduced during the growth procedure. With the thin separation layer, luminescence enhancement and dual-color emission are observed by transferring MoS2 and WS2 mono-layer 2D materials to 5 nm Al2O3/mono-layer MoS2 samples, respectively. The results demonstrate that with careful treatment of the interfaces of 2D crystals with other materials, different stacked structures can be established.
RESUMO
BACKGROUND: Although diffusion gradient directions and b-values have been optimized for diffusion kurtosis imaging (DKI), little is known about the effect of signal averaging on DKI reliability. PURPOSE: To evaluate how signal averaging influences the reliability of DKI indices using two gradient encoding schemes with three spatial resolutions. STUDY TYPE: Prospective. ANIMAL MODEL: Fifteen naïve Sprague-Dawley rats. FIELD STRENGTH/SEQUENCE: DKI was performed at 7T using two schemes (30 directions with three b-values [30d-3b] and six directions with 15 b-values [6d-15b]), three resolutions, and eight repetitions. ASSESSMENT: DKI reliability was assessed using voxelwise relative error (σ) and test-retest error of fractional anisotropy (FA), mean diffusivity (MD), and mean kurtosis (MK) within gray matter (GM) and white matter (WM). The number of excitations (NEX) was optimized by considering DKI reliability. The influence of the partial volume effect (PVE) was also assessed. STATISTICAL TEST: One-way analysis of variance. RESULTS: The 30d-3b scheme, compared with the 6d-15b scheme, exhibited apparently smaller σFA and σMK (eg, at NEX 1, in GM, for three resolutions, σFA : 19.9-38.2% vs. 34.2-61.4%, σMK : 6.9-11.4% vs. 14.1-15.4%) and similar σMD (all differences between two schemes <1.6%). The optimal NEX was determined as 2 for enabling a reliable measurement of DKI-derived indices. The PVE at the lowest resolution apparently increased σFA for both schemes (19.9% for 30d-3b and 34.2% for 6d-15b) and σMK for the 6d-15b scheme (14.7%) in GM, and exerted lower effects on MK values for the 30d-3b scheme (P > 0.05). DATA CONCLUSION: A higher number of diffusion directions would benefit FA and MK estimation. A higher spatial resolution helps to reduce PVE. By using the 30d-3b scheme, MK is considered a robust index to reflect microstructural changes in GM and WM. We propose a systematic approach to determine the optimal DKI protocols for appropriate preclinical settings. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;50:1593-1603.
Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Animais , Ratos , Ratos Sprague-Dawley , Valores de Referência , Reprodutibilidade dos Testes , Razão Sinal-RuídoRESUMO
A nine-layer WS2/MoS2 heterostructure is established on a sapphire substrate after sequential growth of large-area and uniform five- and four-layer MoS2 and WS2 films by using sulfurization of predeposited 1.0 nm molybdenum (Mo) and tungsten (W), respectively. By using the results obtained from the ultraviolet photoelectron spectroscopy and the absorption spectrum measurements of the standalone MoS2 and WS2 samples, a type-II band alignment is predicated for the WS2/MoS2 heterostructure. Increasing drain currents and enhanced field-effect mobility value of the transistor fabricated on the heterostructure suggested that a channel with higher electron concentration compared with the standalone MoS2 transistor channel is obtained with electron injection from WS2 to MoS2 under thermal equilibrium. Selective 2D crystal growth with (I) blank sapphire substrate, (II) standalone MoS2, (III) WS2/MoS2 heterostructure, and (IV) standalone WS2 was demonstrated on a single sapphire substrate. The results have revealed the potential of this growth technique for practical applications.
RESUMO
The combination of ZnO, InN, and GaN epitaxial layers is explored to provide long wavelength photodetection capability in the GaN based materials. Growth temperature optimization was performed to obtain the best quality of InN epitaxial layer in the MOCVD system. The temperature dependent photoluminescence (PL) can provide the information about thermal quenching in the InN PL transitions and at least two non-radiative processes can be observed. X-ray diffraction and energy dispersive spectroscopy are applied to confirm the inclusion of indium and the formation of InN layer. The band alignment of such system shows a typical double heterojunction, which is preferred in optoelectronic device operation. The photodetector manufactured by this ZnO/GaN/InN layer can exhibit extended long-wavelength quantum efficiency, as high as 3.55%, and very strong photocurrent response under solar simulator illumination.
RESUMO
In this Letter, we report the enhanced radiative recombination output from an AlGaAs/GaAs heterojunction bipolar transistor with InAs quantum dots embedded in the base region to form a quantum-dot light-emitting transistor (QDLET) grown by molecular beam epitaxy systems. For the device with a 100 µm×100 µm emitter area, we demonstrate the dual output characteristics with an electrical output and an optical output when the device is operating in the common-emitter configuration. The quantum-dot light-emitting transistor exhibits a base recombination radiation in the near-infrared spectral range with a dominant peak at λ of 1100 nm.
RESUMO
A type II GaSb quantum ring solar cell is fabricated and measured under the concentrated sunlight. The external quantum efficiency confirms the extended absorption from the quantum rings at long wavelength coinciding with the photoluminescence results. The short-circuit current of the quantum ring devices is 5.1% to 9.9% more than the GaAs reference's under various concentrations. While the quantum ring solar cell does not exceed its GaAs counterpart in efficiency under one-sun, the recovery of the open-circuit voltages at higher concentration helps to reverse the situation. A slightly higher efficiency (10.31% vs. 10.29%) is reported for the quantum ring device against the GaAs one.
RESUMO
A type II GaSb quantum ring solar cell is fabricated and measured under the concentrated sunlight. The external quantum efficiency confirms the extended absorption from the quantum rings at long wavelength coinciding with the photoluminescence results. The short-circuit current of the quantum ring devices is 5.1% to 9.9% more than the GaAs reference's under various concentrations. While the quantum ring solar cell does not exceed its GaAs counterpart in efficiency under one-sun, the recovery of the open-circuit voltages at higher concentration helps to reverse the situation. A slightly higher efficiency (10.31% vs. 10.29%) is reported for the quantum ring device against the GaAs one.
RESUMO
This study combines cluster analysis and LRFM (length, recency, frequency, and monetary) model in a pediatric dental clinic in Taiwan to analyze patients' values. A two-stage approach by self-organizing maps and K-means method is applied to segment 1,462 patients into twelve clusters. The average values of L, R, and F excluding monetary covered by national health insurance program are computed for each cluster. In addition, customer value matrix is used to analyze customer values of twelve clusters in terms of frequency and monetary. Customer relationship matrix considering length and recency is also applied to classify different types of customers from these twelve clusters. The results show that three clusters can be classified into loyal patients with L, R, and F values greater than the respective average L, R, and F values, while three clusters can be viewed as lost patients without any variable above the average values of L, R, and F. When different types of patients are identified, marketing strategies can be designed to meet different patients' needs.
Assuntos
Análise por Conglomerados , Clínicas Odontológicas , Modelos Teóricos , Adolescente , Criança , Pré-Escolar , Humanos , Lactente , TaiwanRESUMO
Acoustical behavior of semiconducting transition metal dichalcogenides determines the heat transfer pathway, and thus plays a crucial role in the electronics and optoelectronics design. In this research, van der Waals heterojunctions (vdWHs) consisting of transferred monolayer and bi-layer MoS2 on GaN substrate were studied. We observed an asymmetric bipolar acoustic strain wave with â¼5 ps duration, which describes the surface of substrate undergoing strong compressive deformation after weak tensile deformation in the out-of-plane direction. We developed a theory to explain the mechanisms responsible for the observed strain waveform in the vdWHs elastic system, and obtained the critical parameters of the carrier dynamics by temporal fitting. Our results not only report a coherent acoustic phonon generated in the vdWHs, which will complement our understanding of the thermal transfer at the 2D/substrate interface, but also provide information about the intrinsic properties in the vdWHs, which would benefit the design of the 2D-based devices in the future.
RESUMO
We demonstrate in-plane gate transistors based on the molybdenum disulfide (MoS2)/graphene hetero-structure. The graphene works as channels while MoS2 functions as passivation layers. The weak hysteresis of the device suggests that the MoS2 layer can effectively passivate the graphene channel. The characteristics of devices with and without removal of MoS2 between electrodes and graphene are also compared. The device with direct electrode/graphene contact shows a reduced contact resistance, increased drain current, and enhanced field-effect mobility. The higher field-effect mobility than that obtained through Hall measurement indicates that more carriers are present in the channel, rendering it more conductive.
RESUMO
Detecting the early signs of stroke using non-contrast computerized tomography (NCCT) is essential for the diagnosis of acute ischemic stroke (AIS). However, the hypoattenuation in NCCT is difficult to precisely identify, and accurate assessments of the Alberta Stroke Program Early CT Score (ASPECTS) are usually time-consuming and require experienced neuroradiologists. To this end, this study proposes DGA3-Net, a convolutional neural network (CNN)-based model for ASPECTS assessment via detecting early ischemic changes in ASPECTS regions. DGA3-Net is based on a novel parameter-efficient dihedral group CNN encoder to exploit the rotation and reflection symmetry of convolution kernels. The bounding volume of each ASPECTS region is extracted from the encoded feature, and an attention-guided slice aggregation module is used to aggregate features from all slices. An asymmetry-aware classifier is then used to predict stroke presence via comparison between ASPECTS regions from the left and right hemispheres. Pre-treatment NCCTs of suspected AIS patients were collected retrospectively, which consists of a primary dataset (n = 170) and an external validation dataset (n = 90), with expert consensus ASPECTS readings as ground truth. DGA3-Net outperformed two expert neuroradiologists in regional stroke identification (F1 = 0.69) and ASPECTS evaluation (Cohen's weighted Kappa = 0.70). Our ablation study also validated the efficacy of the proposed model design. In addition, class-relevant areas highlighted by visualization techniques corresponded highly with various well-established qualitative imaging signs, further validating the learned representation. This study demonstrates the potential of deep learning techniques for timely and accurate AIS diagnosis from NCCT, which could substantially improve the quality of treatment for AIS patients.
Assuntos
Isquemia Encefálica , Aprendizado Profundo , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/diagnóstico por imagem , Isquemia Encefálica/diagnóstico por imagem , Estudos Retrospectivos , Alberta , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia , Tomografia Computadorizada por Raios X/métodosRESUMO
Light-emitting diodes (LEDs) are used widely, but when operated at a low-voltage direct current (DC), they consume unnecessary power because a converter must be used to convert it to an alternating current (AC). DC flow across devices also causes charge accumulation at a high current density, leading to lowered LED reliability. In contrast, gallium-nitride-based LEDs can be operated without an AC-DC converter being required, potentially leading to greater energy efficiency and reliability. In this study, we developed a multicolor AC-driven light-emitting device by integrating a WSe2 monolayer and AlGaInP-GaInP multiple quantum well (MQW) structures. The CVD-grown WSe2 monolayer was placed on the top of an AlGaInP-based light-emitting diode (LED) wafer to create a two-dimensional/three-dimensional heterostructure. The interfaces of these hybrid devices are characterized and verified through transmission electron microscopy and energy-dispersive X-ray spectroscopy techniques. More than 20% energy conversion from the AlGaInP MQWs to the WSe2 monolayer was observed to boost the WSe2 monolayer emissions. The voltage dependence of the electroluminescence intensity was characterized. Electroluminescence intensity-voltage characteristic curves indicated that thermionic emission was the mechanism underlying carrier injection across the potential barrier at the Ag-WSe2 monolayer interface at low voltage, whereas Fowler-Nordheim emission was the mechanism at voltages higher than approximately 8.0 V. These multi-color hybrid light-emitting devices both expand the wavelength range of 2-D TMDC-based light emitters and support their implementation in applications such as chip-scale optoelectronic integrated systems, broad-band LEDs, and quantum display systems.
RESUMO
The exploration of functional light-emitting devices and numerous optoelectronic applications can be accomplished on an elegant platform provided by rapidly developing transition metal dichalcogenides (TMDCs). However, TMDCs-based light emitting devices encounter certain serious difficulties, such as high resistance losses from ohmic contacts or the need for complex heterostructures, which restricts the device applications. Despite the fact that AC-driven light emitting devices have developed ways to overcome these challenges, there is still a significant demand for multiple wavelength emission from a single device, which is necessary for full color light emitting devices. Here, we developed a dual-color AC-driven light-emitting device by integrating the WSe2 monolayer and AlGaInP-GaInP multiple quantum well (MQW) structures in the form of capacitor structure using AlOx insulating layer between the two emitters. In order to comprehend the characteristics of the hybrid device under various driving circumstances, we investigate the frequency-dependent EL intensity of the hybrid device using an equivalent RC circuit model. The time-resolved electroluminescence (TREL) characteristics of the hybrid device were analyzed in details to elucidate the underlying physical mechanisms governing its performance under varying applied frequencies. This dual-color hybrid light-emitting device enables the use of 2-D TMDC-based light emitters in a wider range of applications, including broad-band LEDs, quantum display systems, and chip-scale optoelectronic integrated systems.
RESUMO
With the assistance of van der Waals (vdW) epitaxy, nanometer-thick and highly conductive gold films are deposited onto MoS2 surfaces for use as transparent anode electrodes in quantum dot light-emitting diodes (QLEDs) on poly(ethylene terephthalate) (PET) substrates. After transferring wafer-scale and monolayer MoS2 to PET substrates, 10 nm thick gold (Au) films are deposited onto the two-dimensional (2D) material surfaces as anode electrodes. Bounded only by weak vdW forces on 2D material surfaces, the diffusive Au adatoms tend to facilitate lateral growth and lead to the formation of continuous and highly conductive thin metal films in the nanometer regime. The Au film exhibits excellent tensile bending stability for its sheet resistance, which is superior to that of rigid indium-tin oxide (ITO) films on PET substrates. Thermally stable CdSe@CdZnS/ZnS QLEDs are fabricated on the PET substrate. Compared with devices fabricated on sapphire substrates, the phenomenon of sub-bandgap turn-on is observed for the flexible device. Based on our demonstrations, the high conductivity and robust durability toward substrate bending make the nanometer-thick Au film grown on 2D material surfaces a promising candidate to replace current ITO anode electrodes for flexible device applications.
RESUMO
In this research, we applied THz coherent phonon spectroscopy to optically probe the vibrational modes of the epitaxially-grown bi-layer and tri-layer MoS2 on sapphire substrate. The layers' THz vibration is displacively stimulated and temporally retrieved by near-UV femtosecond laser pulses, revealing Raman-active and Raman-inactive modes in one measurement. With the complete breathing modes revealed, here we extend the linear chain model by considering the elastic contact with the substrate and vdWs coupling of the next nearest MoS2 layer to analyze the effective spring constants. We further considered the intralayer stiffness as a correction term to acquire the actual interlayer vdWs coupling. Our THz phonon spectroscopy results indicate the interlayer spring constants of 9.03 × 1019 N/m3 and 9.86 × 1019 N/m3 for bi-layer and tri-layer respectively. The extended model further suggests that a non-negligible substrate mechanical coupling and next nearest neighbor vdWs coupling of 1.48 × 1019 N/m3 and 1.04 × 1019 N/m3 have to be considered.
RESUMO
Thin Copper (Cu) films (15 nm) are deposited on different 2D material surfaces through e-beam deposition. With the assist of van der Waals epitaxy growth mode on 2D material surfaces, preferential planar growth is observed for Cu films on both MoS2 and WSe2 surfaces at room temperature, which will induce a polycrystalline and continuous Cu film formation. Relative low resistivity values 6.07 (MoS2) and 6.66 (WSe2) µΩ-cm are observed for the thin Cu films. At higher growth temperature 200 °C, Cu diffusion into the MoS2 layers is observed while the non-sulfur 2D material WSe2 can prevent Cu diffusion at the same growth temperature. By further increasing the deposition rates, a record-low resistivity value 4.62 µΩ-cm for thin Cu films is observed for the sample grown on the WSe2 surface. The low resistivity values and the continuous Cu films suggest a good wettability of Cu films on 2D material surfaces. The thin body nature, the capability to prevent Cu diffusion and the unique van der Waals epitaxy growth mode of 2D materials will make non-sulfur 2D materials such as WSe2 a promising candidate to replace the liner/barrier stack in interconnects with reducing linewidths.
RESUMO
Layer-by-layer graphene growth is demonstrated by repeating CVD growth cycles directly on sapphire substrates. Improved field-effect mobility values are observed for the bottom-gate transistors fabricated by using the bilayer graphene channel, which indicates an improved crystallinity is obtained after the second CVD growth cycle. Despite the poor wettability of copper on graphene surfaces, graphene may act as a thin and effective diffusion barrier for copper atoms. The low resistivity values of thin copper films deposited on thin monolayer MoS2/monolayer graphene heterostructures have demonstrated its potential to replace current thick liner/barrier stacks in back-end interconnects. The unique van der Waals epitaxy growth mode will be helpful for both homo- and heteroepitaxy on 2D material surfaces.