Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Anal Chem ; 94(2): 1108-1117, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34964350

RESUMO

Gene mutation profiling of heterogeneous circulating tumor cells (CTCs) offers comprehensive and real-time molecular information of tumors for targeted therapy guidance, but the lack of efficient and multiplex genotyping techniques for single-CTC analysis greatly hinders its development and clinical application. This paper reports a single-CTC mass spectrometry analysis method for efficient and multiplex mutation profiling based on digital microfluidics. Digital microfluidics affords integrated single-CTC manipulation, from single-CTC isolation to high-performance whole genome amplification, via nanoliter droplet-based wettability trapping and hydrodynamic adjustment of cell distribution. Coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, multiplex mutation information of individual CTCs can be efficiently and accurately identified by the inherent mass differences of different DNA sequences. This platform achieves Kirsten rat sarcoma viral oncogene mutation profiling of heterogeneous CTCs at the single-cell level from cancer patient samples, offering new avenues for genotype profiling of single CTCs and cancer therapy guidance.


Assuntos
Células Neoplásicas Circulantes , Linhagem Celular Tumoral , Separação Celular/métodos , Genótipo , Humanos , Espectrometria de Massas , Microfluídica/métodos , Células Neoplásicas Circulantes/patologia , Análise de Célula Única/métodos
2.
Chemistry ; 26(38): 8465-8470, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32302026

RESUMO

The conventional synthetic methodology for atomically precise gold nanoclusters by using reduction in solution offers only the thermodynamically most stable nanoclusters. Herein, a solubility-driven isolation strategy is reported to access a metastable gold cluster. The cluster, with the composition of [Au9 (PPh3 )8 ]+ (1), displays an unusual, nearly perfect body-centered cubic (bcc) structure. As revealed by ESI-MS and UV/Vis measurements, the cluster is metastable in solution and converts to the well-known [Au11 (PPh3 )8 Cl2 ]+ (2) within just 90 min. DFT calculations revealed that although both 1 and 2 are eight-electron superatoms, there is a driving force to convert 1 to 2 as shown by the increased cohesion and larger HOMO-LUMO energy gap of 2. The isolation and crystallization of the metastable gold cluster were achieved in a biphasic reaction system in which reduction of gold precursors and crystallization of 1 took place concurrently. This synthetic protocol represents a successful strategy for investigations of other metastable species in metal nanocluster chemistry.

3.
Proc Natl Acad Sci U S A ; 114(46): 12132-12137, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087328

RESUMO

Buckminsterfullerene (C60) represents a perfect combination of geometry and molecular structural chemistry. It has inspired many creative ideas for building fullerene-like nanopolyhedra. These include other fullerenes, virus capsids, polyhedra based on DNA, and synthetic polynuclear metal clusters and cages. Indeed, the regular organization of large numbers of metal atoms into one highly complex structure remains one of the foremost challenges in supramolecular chemistry. Here we describe the design, synthesis, and characterization of a Ag180 nanocage with 180 Ag atoms as 4-valent vertices (V), 360 edges (E), and 182 faces (F)--sixty 3-gons, ninety 4-gons, twelve 5-gons, and twenty 6-gons--in agreement with Euler's rule V - E + F = 2. If each 3-gon (or silver Trigon) were replaced with a carbon atom linked by edges along the 4-gons, the result would be like C60, topologically a truncated icosahedron, an Archimedean solid with icosahedral (Ih) point-group symmetry. If C60 can be described mathematically as a curling up of a 6.6.6 Platonic tiling, the Ag180 cage can be described as a curling up of a 3.4.6.4 Archimedean tiling. High-resolution electrospray ionization mass spectrometry reveals that {Ag3}n subunits coexist with the Ag180 species in the assembly system before the final crystallization of Ag180, suggesting that the silver Trigon is the smallest building block in assembly of the final cage. Thus, we assign the underlying growth mechanism of Ag180 to the Silver-Trigon Assembly Road (STAR), an assembly path that might be further employed to fabricate larger, elegant silver cages.

4.
Inorg Chem ; 58(1): 259-264, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30582690

RESUMO

An ab initio one-pot synthesis of the bimetallic clusters [Au nAg44- n(SC6H3F2)30]4- (abbreviated (AuAg)44; n ≤ 12) is reported. The mixed-metal (AuAg)44 clusters, synthesized with different reactant Au/Ag ratios, exhibit a fractal-like distribution, suggesting that nucleation of the icosahedral core is a fractal growth process. X-ray crystallographic studies provided unambiguous evidence that the doped Au atoms occupy the icosahedral sites and the maximal doping is 12. The number of Au atoms ( n) in [Au nAg44- n(SR)30]4- (SR = SC6H3F2) can be continuously tuned from 0 to 12. A three-way correspondence between single-crystal structure, MS, and UV-vis is established, thereby facilitating future identification (finger-printing) of the alloy [Au nAg44- n(SR)30]4- clusters. The temperature, solvent, and temporal effects in the synthesis were also investigated.

5.
Angew Chem Int Ed Engl ; 58(49): 17731-17735, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31517436

RESUMO

Surface organic ligands play a critical role in stabilizing atomically precise metal nanoclusters in solutions. However, it is still challenging to prepare highly robust ligated metal nanoclusters that are surface-active for liquid-phase catalysis without any pre-treatment. Now, an N-heterocyclic carbene-stabilized Au25 nanocluster with high thermal and air stabilities is presented as a homogenous catalyst for cycloisomerization of alkynyl amines to indoles. The nanocluster, characterized as [Au25 (i Pr2 -bimy)10 Br7 ]2+ (i Pr2 -bimy=1,3-diisopropylbenzimidazolin-2-ylidene) (1), was synthesized by direct reduction of AuSMe2 Cl and i Pr2 -bimyAuBr with NaBH4 in one pot. X-ray crystallization analysis revealed that the cluster comprises two centered Au13 icosahedra sharing a vertex. Cluster 1 is highly stable and can survive in solution at 80 °C for 12 h, which is superior to Au25 nanoclusters passivated with phosphines or thiols. DFT computations reveal the origins of both electronic and thermal stability of 1 and point to the probable catalytic sites. This work provides new insights into the bonding capability of N-heterocyclic carbene to Au in a cluster, and offers an opportunity to probe the catalytic mechanism at the atomic level.

6.
Angew Chem Int Ed Engl ; 58(3): 835-839, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30406951

RESUMO

An effective strategy is developed to synthesize high-nuclearity Cu clusters, [Cu53 (RCOO)10 (C≡CtBu)20 Cl2 H18 ]+ (Cu53 ), which is the largest CuI /Cu0 cluster reported to date. Cu powder and Ph2 SiH2 are employed as the reducing agents in the synthesis. As revealed by single-crystal diffraction, Cu53 is arranged as a four-concentric-shell Cu3 @Cu10 Cl2 @Cu20 @Cu20 structure, possessing an atomic arrangement of concentric M12 icosahedral and M20 dodecahedral shells which popularly occurs in Au/Ag nanoclusters. Surprisingly, Cu53 can be dissolved in diethyl ether and spin coated to form uniform nanoclusters film on organolead halide perovskite. The cluster film can subsequently be converted into high-quality CuI film via in situ iodination at room temperature. The as-fabricated CuI film is an excellent hole-transport layer for fabricating highly stable CuI-based perovskite solar cells (PSCs) with 14.3 % of efficiency.

7.
Anal Chem ; 90(8): 5224-5231, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29569903

RESUMO

Digital microfluidics (DMF) is a powerful platform for a broad range of applications, especially immunoassays having multiple steps, due to the advantages of low reagent consumption and high automatization. Surface enhanced Raman scattering (SERS) has been proven as an attractive method for highly sensitive and multiplex detection, because of its remarkable signal amplification and excellent spatial resolution. Here we propose a SERS-based immunoassay with DMF for rapid, automated, and sensitive detection of disease biomarkers. SERS tags labeled with Raman reporter 4-mercaptobenzoic acid (4-MBA) were synthesized with a core@shell nanostructure and showed strong signals, good uniformity, and high stability. A sandwich immunoassay was designed, in which magnetic beads coated with antibodies were used as solid support to capture antigens from samples to form a beads-antibody-antigen immunocomplex. By labeling the immunocomplex with a detection antibody-functionalized SERS tag, antigen can be sensitively detected through the strong SERS signal. The automation capability of DMF can greatly simplify the assay procedure while reducing the risk of exposure to hazardous samples. Quantitative detection of avian influenza virus H5N1 in buffer and human serum was implemented to demonstrate the utility of the DMF-SERS method. The DMF-SERS method shows excellent sensitivity (LOD of 74 pg/mL) and selectivity for H5N1 detection with less assay time (<1 h) and lower reagent consumption (∼30 µL) compared to the standard ELISA method. Therefore, this DMF-SERS method holds great potentials for automated and sensitive detection of a variety of infectious diseases.


Assuntos
Imunoensaio , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Técnicas Analíticas Microfluídicas , Automação , Análise Espectral Raman , Propriedades de Superfície
8.
Angew Chem Int Ed Engl ; 57(34): 10976-10979, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-29968350

RESUMO

A building blocks strategy is an effective approach for constructing the large molecular systems. Herein, we demonstrate that high-resolution electro-spray ionization mass spectrometry (HRESI-MS) provides an effective chance to insight the assemble process of the building blocks and guides the construction of high-nuclearity metal clusters on the basis of the reaction of Ti(Oi Pr)4 , Eu(acac)3 , and salicylic acid. The time-dependent HRESI-MS indicates that not only a Eu3 Ti building block can be formed, but that it can further assemble into a Eu24 Ti8 compound. Temperature-dependent HRESI-MS reveals that increase of the reaction temperature favors the formation and crystallization of the stable Eu24 Ti8 structure. Single-crystal structural analysis demonstrates that the Eu24 Ti8 has a wheel-like structure with diameter of ca. 4.1 nm and is the highest nuclearity lanthanide-titanium oxo cluster reported to date.

9.
Angew Chem Int Ed Engl ; 57(13): 3421-3425, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29405573

RESUMO

A general method, using mixed ligands (here diphosphines and thiolates) is devised to turn an achiral metal cluster, Au13 Cu2 , into an enantiomeric pair by breaking (lowering) the overall molecular symmetry with the ligands. Using an achiral diphosphine, a racemic [Au13 Cu2 (DPPP)3 (SPy)6 ]+ was prepared which crystallizes in centrosymmetric space groups. Using chiral diphosphines, enantioselective synthesis of an optically pure, enantiomeric pair of [Au13 Cu2 ((2r,4r)/(2s,4s)-BDPP)3 (SPy)6 ]+ was achieved in one pot. Their circular dichroism (CD) spectra give perfect mirror images in the range of 250-500 nm with maximum anisotropy factors of 1.2×10-3 . DFT calculations provided good correlations with the observed CD spectra of the enantiomers and, more importantly, revealed the origin of the chirality. Racemization studies show high stability (no racemization at 70 °C) of these chiral nanoclusters, which hold great promise in applications such as asymmetry catalysis.

10.
J Am Chem Soc ; 139(38): 13288-13291, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28892364

RESUMO

Surface ligands play important roles in controlling the size and shape of metal nanoparticles and their surface properties. In this work, we demonstrate that the use of bulky thiolate ligands, along with halides, as the surface capping agent promotes the formation of plasmonic multiple-twinned Ag nanoparticles with high surface reactivities. The title nanocluster [Ag141X12(S-Adm)40]3+ (where X = Cl, Br, I; S-Adm = 1-adamantanethiolate) has a multiple-shell structure with an Ag71 core protected by a shell of Ag70X12(S-Adm)40. The Ag71 core can be considered as 20 frequency-two Ag10 tetrahedra fused together with a dislocation that resembles multiple-twinning in nanoparticles. The nanocluster has a strong plasmonic absorption band at 460 nm. Because of the bulkiness of S-Adm, the nanocluster has a low surface thiolate coverage and thus unusually high surface reactivities toward exchange reactions with different ligands, including halides, phenylacetylene and thiols. The cluster can be made water-soluble by metathesis with water-soluble thiols, thereby creating new functionalities for potential bioapplications.

11.
Angew Chem Int Ed Engl ; 56(51): 16252-16256, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29057623

RESUMO

By using ethylene glycol and monocarboxylic acid as surface ligands, a series of cyclic Ti-oxo clusters (CTOC) with permanent microporosity are successfully synthesized. With a cyclic {Ti32 O16 } backbone made of eight connected Ti4 tetrahedral cages that are arranged in a zigzag fashion, the clusters have a "donut" shape with an inner diameter of 8.3 Å, outer diameter of 26.9 Šand height of 10.4 Å. While both inner and outer walls of the "donut" clusters are modified by double-deprotonated ethylene glycolates, their upper and lower surfaces are bound by carboxylates and mono-deprotonated ethylene glycolates. The clusters are readily packed into one-dimensional tubes which are further arranged in two different modes into crystalline microporous solids with surface areas over 660 m2 g-1 , depending on the surface carboxylates. The solid with olefin-bearing carboxylates exhibits a superior CO2 adsorption capacity of 40 cm3 g-1 at 273 K under 1 atm. Moreover, the mono-deprotonated ethylene glycolates on the clusters are demonstrated to be highly exchangeable by other alcohols, providing a nice platform for creating microporous solids or films with a wide variety of surface functionalities.

12.
J Am Chem Soc ; 138(39): 12751-12754, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27626935

RESUMO

In this work, a facile ion-pairing strategy for asymmetric synthesis of optically active negatively charged chiral metal nanoparticles using chiral ammonium cations is demonstrated. A new thiolated chiral three-concentric-shell cluster, [Ag28Cu12(SR)24]4-, was first synthesized as a racemic mixture and characterized by single-crystal X-ray structure determination. Mass spectrometric measurements revealed relatively strong ion-pairing interactions between the anionic nanocluster and ammonium cations. Inspired by this observation, the as-prepared racemic mixture was separated into enantiomers by employing chiral quaternary ammonium salts as chiral resolution agents. Subsequently, direct asymmetric synthesis of optically active enantiomers of [Ag28Cu12(SR)24]4- was achieved by using appropriate chiral ammonium cations (such as N-benzylcinchoninium vs N-benzylcinchonidinium) in the cluster synthesis. These simple strategies, ion-pairing enantioseparation and direct asymmetric synthesis using chiral counterions, may be of general use in preparing chiral metal nanoparticles.

13.
J Am Chem Soc ; 138(10): 3278-81, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26922997

RESUMO

Metal nanoclusters whose surface ligands are removable while keeping their metal framework structures intact are an ideal system for investigating the influence of surface ligands on catalysis of metal nanoparticles. We report in this work an intermetallic nanocluster containing 62 metal atoms, Au34Ag28(PhC≡C)34, and its use as a model catalyst to explore the importance of surface ligands in promoting catalysis. As revealed by single-crystal diffraction, the 62 metal atoms in the cluster are arranged as a four-concentric-shell Ag@Au17@Ag27@Au17 structure. All phenylalkynyl (PA) ligands are linearly coordinated to the surface Au atoms with staple "PhC≡C-Au-C≡CPh" motif. Compared with reported thiolated metal nanoclusters, the surface PA ligands on Au34Ag28(PhC≡C)34 are readily removed at relatively low temperatures, while the metal core remains intact. The clusters before and after removal of surface ligands are used as catalysts for the hydrolytic oxidation of organosilanes to silanols. It is, for the first time, demonstrated that the organic-capped metal nanoclusters work as active catalysts much better than those with surface ligands partially or completely removed.

14.
J Am Chem Soc ; 138(4): 1328-34, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26780000

RESUMO

In search of functional molecular materials and the study of their formation mechanism, we report the elucidation of a hierarchical step-by-step formation from monomer (Mn) to heptamer (Mn7) to nonadecamer (Mn19) satisfying the relation 1 + Σn6n, where n is the ring number of the Brucite structure using high-resolution electrospray ionization mass spectrometry (HRESI-MS). Three intermediate clusters, Mn10, Mn12, and Mn14, were identified. Furthermore, the Mn19 disc remains intact when dissolved in acetonitrile with a well-resolved general formula of [Mn19(L)x(OH)y(N3)36-x-y](2+) (x = 18, 17, 16; y = 8, 7, 6; HL = 1-(hydroxymethyl)-3,5-dimethylpyrazole) indicating progressive exchange of N3(-) for OH(-). The high symmetry (R-3) Mn19 crystal structure consists of a well-ordered discotic motif where the peripheral organic ligands form a double calix housing the anions and solvent molecules. From the formula and valence bond sums, the charge state is mixed-valent, [Mn(II)15Mn(III)4]. Its magnetic properties and electrochemistry have been studied. It behaves as a ferrimagnet below 40 K and has a coercive field of 2.7 kOe at 1.8 K, which can be possible by either weak exchange between clusters through the anions and solvents or through dipolar interaction through space as confirmed by the lack of ordering in frozen CH3CN. The moment of nearly 50 NµB suggests Mn(II)-Mn(II) and Mn(III)-Mn(III) are ferromagnetically coupled while Mn(II)-Mn(III) is antiferromagnetic which is likely if the Mn(III) are centrally placed in the cluster. This compound displays the rare occurrence of magnetic ordering from nonconnected high-spin molecules.

15.
Chemistry ; 22(49): 17619-17626, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27730682

RESUMO

Cu(CF3 COO)2 reacts with tert-butylacetylene (tBuC≡CH) in methanol in the presence of metallic copper powder to give two air-stable clusters, [CuI15 (tBuC≡C)10 (CF3 COO)5 ]⋅tBuC≡CH (1) and [CuI16 (tBuC≡C)12 (CF3 COO)4 (CH3 OH)2 ] (2). The assembly process involves in situ comproportionation reaction between Cu2+ and Cu0 and the formation of two different clusters is controlled by reactants concentration. The clusters consist of Cu15 and Cu16 cores co-stabilized by strong by σ- and π-bonded tert-butylethynide and CF3 COO- (together with methanol molecule in 2). Their stabilities in solution were confirmed using electrospray ionization mass spectrometry in which the cluster core remains intact for 1 in chloroform and acetone, and for 2 in acetonitrile. Strong thermochromic luminescence in the near infrared (NIR) region was observed in the solid-state. Of particular interest, the emission maximum of 1 is red-shifted from 710 nm at 298 K to 793 nm at 93 K, along with a 17-fold fluorescence enhancement. In contrast, 2 exhibits red shift from 298 to 123 K followed by blue shift from 123 to 93 K. The emission wavelength was correlated with the structural parameters using variable-temperature X-ray single-crystal analyses. The rich cuprophilic interaction plays a significant role in the formation of 3 LMCT (tBuC≡C→Cux ) excited state mixed with cluster-centered (3 CC) characters, which can be considerably influenced by temperature, leading to thermochromic luminescence. The present work provides 1) a new synthetic protocol for the high-nuclear CuI -alkynyl clusters; 2) a comprehensive insight into the mechanism of thermochromic luminescence; 3) unusual emissive materials with the characters of NIR and thermochromic luminescence simultaneously.

16.
Rapid Commun Mass Spectrom ; 30 Suppl 1: 8-13, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27539407

RESUMO

RATIONALE: Mass spectrometry (MS) has been recognized as a powerful technique to detect accurate chemical information about metal clusters. Maintaining metal clusters intact, which is a great challenge in MS analysis, was achieved in this work by choosing a suitable mass analyzer and carefully optimizing analysis parameters. METHODS: Electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) and electrospray ion trap mass spectrometry (ESI-IT-MS) were applied to characterize the synthesized ligand-protected metal clusters [Au6 Ag2 (C)(L(1) )6 ](BF4 )4 (L(1)  = 2-diphenylphosphanyl-4-methylpyridine) (1) and [Au8 (L(2) )3 (L(3) )2 ](NO3 )2 (L(2)  = bis(2-diphenylphosphinophenyl)ether, L(3)  = triphenyl-phosphane) (2). Three kinds of buffer gas (helium, mass: 2; nitrogen, mass: 28; argon, mass: 40) and various radiofrequency (RF) amplitudes (from 70 to 330) were chosen to study the fragmentation rate during the "collision cooling" process in the ion trap analyzer. RESULTS: In the ESI-TOF-MS analysis, metal clusters 1 and 2 were mainly observed as intact clusters, which were Au6 Ag2 (C)(L(1) )6 (BF4 )2 (2+) , Au6 Ag2 (C)(L(1) )6 (BF4 )(3+) , Au6 Ag2 (C)(L(1) )6 (4+) for 1 and Au8 (L(2) )3 (L(3) )2 (2+) for 2. While, in the ESI-IT-MS analysis, only fragments could be found, such as Au6 Ag(C)(L(1) )6 (BF4 )(2+) , Au6 (C)(L(1) )6 (2+) , Au5 Ag(C)(L(1) )4 (2+) , Au6 Ag(C)(L(1) )6 (3+) , Au(L(1) )(+) for 1 and Au8 (L(2) )3 (L(3) )(2+) , Au8 (L(2) )3 (2+) , Au6 (L(2) )3 (2+) for 2. It is obvious that the two kinds of mass analyzers caused different MS behaviors of metal clusters. In the ion trap (IT) mass analyzer, particularly, "collision cooling" was contributing to further dissociation of fragile compounds, in which a higher RF amplitude and a larger mass buffer gas led to more fragmentation. CONCLUSION: In this work, intact metal clusters were obtained in ESI-TOF-MS, instead of ESI-IT-MS, in which the "collision cooling" process caused more cluster dissociation. It was concluded that the analyzer in ESI-TOF-MS is "softer" than that in ESI-IT-MS for metal clusters. Copyright © 2016 John Wiley & Sons, Ltd.

17.
Angew Chem Int Ed Engl ; 55(48): 15152-15156, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27809398

RESUMO

The synthesis, structure, substitution chemistry, and optical properties of the gold-centered cubic monocationic cluster [Au@Ag8 @Au6 (C≡Ct Bu)12 ]+ are reported. The metal framework of this cluster can be described as a fragment of a body-centered cubic (bcc) lattice with the silver and gold atoms occupying the vertices and the body center of the cube, respectively. The incorporation of alkali metal atoms gave rise to [Mn Ag8-n Au7 (C≡Ct Bu)12 ]+ clusters (n=1 for M=Na, K, Rb, Cs and n=2 for M=K, Rb), with the alkali metal ion(s) presumably occupying the vertex site(s), whereas the incorporation of copper atoms produced [Cun Ag8 Au7-n (C≡Ct Bu)12 ]+ clusters (n=1-6), with the Cu atom(s) presumably occupying the capping site(s). The parent cluster exhibited strong emission in the near-IR region (λmax =818 nm) with a quantum yield of 2 % upon excitation at λ=482 nm. Its photoluminescence was quenched upon substitution with a Na+ ion. DFT calculations confirmed the superatom characteristics of the title compound and the sodium-substituted derivatives.

18.
J Am Chem Soc ; 137(37): 11880-3, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26351859

RESUMO

With the incorporation of Pd or Pt atoms, thiolated Ag-rich 25-metal-atom nanoclusters were successfully prepared and structurally characterized for the first time. With a composition of [PdAg24(SR)18](2-) or [PtAg24(SR)18](2-), the obtained 25-metal-atom nanoclusters have a metal framework structure similar to that of widely investigated Au25(SR)18. In both clusters, a M@Ag12 (M = Pd, Pt) core is capped by six distorted dimeric -RS-Ag-SR-Ag-SR- units. However, the silver-thiolate overlayer gives rise to a geometric chirality at variance to Au25(SR)18. The effect of doping on the electronic structure was studied through measured optical absorption spectra and ab initio analysis. This work demonstrates that modulating electronic structures by transition-metal doping is expected to provide effective means to manipulate electronic, optical, chemical, and catalytic properties of thiolated noble metal nanoclusters.

19.
J Am Chem Soc ; 137(13): 4324-7, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25803406

RESUMO

An intermetallic nanocluster containing 44 metal atoms, Au24Ag20(2-SPy)4(PhC≡C)20Cl2, was successfully synthesized and structurally characterized by single-crystal analysis and density funtional theory computations. The 44 metal atoms in the cluster are arranged as a concentric three-shell Au12@Ag20@Au12 Keplerate structure having a high symmetry. For the first time, the co-presence of three different types of anionic ligands (i.e., phenylalkynyl, 2-pyridylthiolate, and chloride) was revealed on the surface of metal nanoclusters. Similar to thiolates, alkynyls bind linearly to surface Au atoms using their σ-bonds, leading to the formation of two types of surface staple units (PhC≡C-Au-L, L = PhC≡C(-) or 2-pyridylthiolate) on the cluster. The co-presence of three different surface ligands allows the site-specific surface and functional modification of the cluster. The lability of PhC≡C(-) ligands on the cluster was demonstrated, making it possible to keep the metal core intact while removing partial surface capping. Moreover, it was found that ligand exchange on the cluster occurs easily to offer various derivatives with the same metal core but different surface functionality and thus different solubility.


Assuntos
Ouro/química , Nanoestruturas/química , Prata/química , Ligantes , Modelos Moleculares , Conformação Molecular
20.
Angew Chem Int Ed Engl ; 54(36): 10448-53, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26180027

RESUMO

Herein, we demonstrate that a very familiar, yet underutilized, physical parameter­gas pressure­can serve as signal readout for highly sensitive bioanalysis. Integration of a catalyzed gas-generation reaction with a molecular recognition component leads to significant pressure changes, which can be measured with high sensitivity using a low-cost and portable pressure meter. This new signaling strategy opens up a new way for simple, portable, yet highly sensitive biomedical analysis in a variety of settings.


Assuntos
Pressão , Técnicas Biossensoriais , Ensaio de Imunoadsorção Enzimática , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA