RESUMO
Coronavirus disease 2019 is a respiratory infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Evidence on the pathogenesis of SARS-CoV-2 is accumulating rapidly. In addition to structural proteins such as Spike and Envelope, the functional roles of non-structural and accessory proteins in regulating viral life cycle and host immune responses remain to be understood. Here, we show that open reading frame 8 (ORF8) acts as messenger for inter-cellular communication between alveolar epithelial cells and macrophages during SARS-CoV-2 infection. Mechanistically, ORF8 is a secretory protein that can be secreted by infected epithelial cells via both conventional and unconventional secretory pathways. Conventionally secreted ORF8 is glycosylated and loses the ability to recognize interleukin 17 receptor A of macrophages, possibly due to the steric hindrance imposed by N-glycosylation at Asn78. However, unconventionally secreted ORF8 does not undergo glycosylation without experiencing the ER-Golgi trafficking, thereby activating the downstream NF-κB signaling pathway and facilitating a burst of cytokine release. Furthermore, we show that ORF8 deletion in SARS-CoV-2 attenuates inflammation and yields less lung lesions in hamsters. Our data collectively highlights a role of ORF8 protein in the development of cytokine storms during SARS-CoV-2 infection.
Assuntos
COVID-19 , Síndrome da Liberação de Citocina , SARS-CoV-2 , Proteínas Virais , Humanos , COVID-19/patologia , Síndrome da Liberação de Citocina/patologia , Inflamação , Fases de Leitura Aberta , SARS-CoV-2/fisiologia , Proteínas Virais/metabolismoRESUMO
SignificanceHatching from the zona pellucida is a prerequisite for embryo implantation and is less likely to occur in vitro for reasons unknown. Extracellular vesicles (EVs) are secreted by the embryo into the culture medium. Yet the role that embryonic EVs and their cargo microRNAs (miRNAs) play in blastocyst hatching has not been elucidated, partially due to the difficulties of isolating them from low amounts of culture medium. Here, we optimized EV-miRNA isolation from medium conditioned by individually cultured bovine embryos and subsequently showed that miR-378a-3p, which was up-regulated in EVs secreted by blastocysts, plays a crucial role in promoting blastocyst hatching. This demonstrates the regulatory effect of miR-378-3p on hatching, which is an established embryo quality parameter linked with implantation.
Assuntos
Vesículas Extracelulares , MicroRNAs , Animais , Blastocisto , Bovinos , Meios de Cultura , Técnicas de Cultura Embrionária , Embrião de Mamíferos , Vesículas Extracelulares/genética , MicroRNAs/genéticaRESUMO
Under the selective pressure of nirmatrelvir, a peptidomimetic covalent drug targeting SARS-CoV-2 Mpro, various drug-resistant mutations on Mpro have been acquired in vitro. Among the mutations, L50F and E166V, along with the combination of L50F and E166V, are particularly representative and pose considerable obstacles to the effective treatment of COVID-19. Our previous study identified NMI-001 and NMI-002 as novel nonpeptide inhibitors that target SARS-CoV-2 Mpro, possessing unique scaffolds and binding modes different from those of nirmatrelvir. In view of these findings, we proposed a drug design strategy aimed at rapidly identifying inhibitors that can combat mutation-induced drug resistance. Initially, molecular dynamics (MD) simulation was employed to investigate the binding mechanisms of NMI-001 and NMI-002 against the three drug-resistant mutants (Mpro_L50F, Mpro_E166V, and Mpro_L50F+E166V). Then, we conducted two phases of high-throughput virtual screening. In the first phase, NMI-001 served as a template to perform scaffold hopping-based similarity search in a library of 15,742,661 compounds. In the second phase, 968 compounds exhibiting similarity to NMI-001 were evaluated via molecular docking and MD simulations. Six compounds that may be effective against at least one mutant were identified, and five compounds were procured for conducting in vitro assays. Finally, the compound Z1557501297 (NMI-003) exhibiting inhibitory effects against the E166V (IC50 = 27.81 ± 2.65 µM) and L50F+E166V (IC50 = 8.78 ± 0.74 µM) mutants was discovered. The binding modes referring to NMI-003-Mpro_E166V and NMI-003-Mpro_L50F+E166V were further elucidated at the atomic level. In summary, NMI-003 reported herein is the first compound with activity against E166V and L50F+E166V, which provides a good starting point to design novel antiviral drugs for the treatment of drug-resistant SARS-CoV-2.
Assuntos
Antivirais , Farmacorresistência Viral , Simulação de Dinâmica Molecular , SARS-CoV-2 , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Antivirais/farmacologia , Antivirais/química , Humanos , Farmacorresistência Viral/genética , Simulação de Acoplamento Molecular , Mutação , Descoberta de Drogas , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Tratamento Farmacológico da COVID-19 , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Desenho de FármacosRESUMO
Electrochemical alkalization of (Cu-S)n metal-organic framework (MOF) and graphene oxide ((Cu-S)n MOF/GO) composite yields a new CuO/(Cu-S)n MOF/RGO (reduced GO) composite with porous morphology on screen printed carbon electrode (SPCE) which facilitated the electron transfer properties in electrochemical quercetin (QUE) detection. A selective QUE detection ability has been demonstrated by the constructed electrochemical sensor (CuO/(Cu-S)n MOF/RGO/SPCE), which also has a broad dynamic range of 0.5 to 115 µM in pH 3 by differential pulse voltammetry. The detection limit is 0.083 µM (S/N = 3). In this study, it was observed that the real samples contained 0.34 mg mL-1 and 27.7 µg g-1 QUE in wine and onion, respectively.
RESUMO
Ulcerative colitis(UC) is one of the common gastrointestinal diseases worldwide. In recent years, the incidence of UC has been continuously increasing, seriously threatening the health of people globally. It thus has become an urgent problem that needs to be addressed. There is research evidence that intestinal mucosal barrier dysfunction, including changes in intestinal stem cell secretion lineage, mucosal layer damage, disruption of cell junctions, overactive immune function, and imbalanced gut microbiota, is an important pathogenic factor and molecular basis of UC. The Notch signaling pathway is a highly conserved signaling pathway in eukaryotes during evolution, which transmits signals through cell connections between adjacent cells, affecting a series of processes such as cell proliferation, differentiation, development, migration, and apoptosis. Therefore, the Notch signaling pathway can regulate intestinal stem cells, CD4~+T cells, innate lymphoid cells(ILCs), macrophages(MØ), and intestinal microbiota and thus affect the chemical, physical, immune, and biological mucosal barriers of the intestinal mucosa. Its function is extensive and unique, different from those signaling pathways that mainly focus on anti-inflammatory and antioxidant stress. It can explain the therapeutic effects of traditional Chinese medicine from different perspectives. This article reviewed the role of the Notch1 signaling pathway in the pathogenesis of UC and the relevant literature on the targeted prevention and treatment of UC with traditional Chinese medicine, so as to provide new targets and theoretical support for further research on the effective prevention and treatment of UC.
Assuntos
Colite Ulcerativa , Receptor Notch1 , Transdução de Sinais , Humanos , Transdução de Sinais/efeitos dos fármacos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/imunologia , Colite Ulcerativa/metabolismo , Receptor Notch1/metabolismo , Receptor Notch1/genética , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional ChinesaRESUMO
OBJECTIVES: Farfarae Flos has the effect of cough suppression and phlegm elimination, with cough suppression as the main function. Studies have revealed that certain components of Farfarae Flos may be related to its cough suppressant effect, and some components have been confirmed to have cough suppressant activity. However, the antitussive material basis of Farfarae Flos has not been systematically elucidated. This study aims to elucidate the group of active ingredients in Farfarae Flos with cough suppressant activity by correlating the high performance liquid chromatography (HPLC) fingerprint of Farfarae Flos extract with its cough suppressant activity. METHODS: HPLC was used to establish the fingerprint profiles of 10 batches of Farfarae Flos extract and obtain their chemical composition data. Guinea pigs were selected as experimental animals and the citric acid-induced cough model was used to evaluate the antitussive efficacy data of 10 batches of Farfarae Flos extract. SPF-grade healthy male Hartley guinea pigs were randomly divided into the S1 to S10 groups, a positive control group, and a blank control group (12 groups in total), with 10 guinea pigs in each group. The S1 to S10 groups were respectively administered Farfarae Flos extract S1 to S10 (4 g/kg), the positive control group was administered pentoverine citrate (10 mg/kg), and the blank control group was administered purified water. Each group received continuous oral administration for 5 days. The guinea pigs were placed in 5 L closed wide-mouth bottles, and 17.5% citric acid was sprayed into the bottle with an ultrasonic atomizer at the maximum spray intensity for 0.5 minutes. The cough latency period and cough frequency in 5 minutes were recorded for each guinea pig. Grey relational analysis (GRA) and partial least squares regression (PLSR) were used to conduct spectral-effect correlation analysis of the chemical composition data of Farfarae Flos extract and the antitussive efficacy data, and predict the group of active ingredients in Farfarae Flos with antitussive activity. The bioequivalence verification was conducted to verify the predicted group of active ingredients in Farfarae Flos with antitussive activity: SPF-grade healthy male Hartley guinea pigs were randomly divided into a S9 group, an active ingredient group, a positive control group, and a blank control group (4 groups in total), with 10 guinea pigs in each group. The S9 group was administered Farfarae Flos extract S9 (4 g/kg), the active ingredient group was administered the predicted combination of antitussive active ingredients (dose equivalent to 4 g/kg of Farfarae Flos extract S9), the positive control group was administered pentoverine citrate (10 mg/kg), and the blank control group was administered purified water. Each group received continuous oral administration for 5 days, and animal modeling and observation of efficacy indicators were the same as above. RESULTS: The HPLC fingerprint of 10 batches of Farfarae Flos extract was established, and the peak area data of 14 main common peaks were obtained. The antitussive effect data of 10 batches of Farfarae Flos extract were obtained. Compared with the blank control group, the cough latence in the positive control group and S1, S2, S3, S4, S6, S7, S8, S9, S10 groups was prolonged (all P<0.01), while the cough frequency in 5 minutes in the positive control group and S1, S2, S4, S6, S8, S9, S10 groups was decreased (all P<0.05). The analysis of spectrum-effect relationship revealed that isochlorogenic acid C, isochlorogenic acid A, chlorogenic acid, isochlorogenic acid B, isoquercitrin, and rutin had high contribution to the antitussive effect of Farfarae Flos, and the 6 components were predicted to be the antitussive component group of Farfarae Flos. The verification of bioequivalence showed that there were no statistically significant differences in the antitussive effect between the S9 group and the antitussive component composition group(all P>0.05), which confirmed that isochlorogenic acid C, isochlorogenic acid A, chlorogenic acid, isochlorogenic acid B, isoquercetin, and rutin were the antitussive component group of Farfarae Flos. CONCLUSIONS: The analysis of spectrum-effect relationship combined with the verification of bioequivalence could be used to study the antitussive material basis of Farfarae Flos. The antitussive effect of Farfarae Flos is the result of the joint action of many components.
Assuntos
Antitussígenos , Tosse , Medicamentos de Ervas Chinesas , Flores , Animais , Antitussígenos/uso terapêutico , Antitussígenos/farmacologia , Cobaias , Flores/química , Masculino , Tosse/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Cordyceps/químicaRESUMO
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) that places a heavy strain on public health. Host susceptibility to Mtb is modulated by macrophages, which regulate the balance between cell apoptosis and necrosis. However, the role of molecular switches that modulate apoptosis and necrosis during Mtb infection remains unclear. Here, we show that Mtb-susceptible mice and TB patients have relatively low miR-342-3p expression, while mice with miR-342-3p overexpression are more resistant to Mtb. We demonstrate that the miR-342-3p/SOCS6 axis regulates anti-Mtb immunity by increasing the production of inflammatory cytokines and chemokines. Most importantly, the miR-342-3p/SOCS6 axis participates in the switching between Mtb-induced apoptosis and necrosis through A20-mediated K48-linked ubiquitination and RIPK3 degradation. Our findings reveal several strategies by which the host innate immune system controls intracellular Mtb growth via the miRNA-mRNA network and pave the way for host-directed therapies targeting these pathways.
Assuntos
MicroRNAs , Mycobacterium tuberculosis , Tuberculose , Animais , Morte Celular , Humanos , Inflamação/genética , Camundongos , MicroRNAs/genética , Mycobacterium tuberculosis/genética , Proteínas Supressoras da Sinalização de Citocina , Tuberculose/genéticaRESUMO
Facilely synthesized peroxidase-like nanozymes with high catalytic activity and stability may serve as effective biocatalysts. The present study synthesizes peroxidase-like nanozymes with multinuclear active sites using two-dimensional (2D) metal-organic framework (MOF) nanosheets and evaluates them for their practical applications. A simple method involving a one-pot bottom-up reflux reaction is developed for the mass synthesis of (Cu-S)n MOF 2D nanosheets, significantly increasing production quantity and reducing reaction time compared to traditional autoclave methods. The (Cu-S)n MOF 2D nanosheets with the unique coordination of Cu(I) stabilized in Cu-based MOFs demonstrate impressive activity in mimicking natural peroxidase. The active sites of the peroxidase-like activity of (Cu-S)n MOF 2D nanosheets were predominantly verified as Cu(I) rather than Cu(II) of other Cu-based MOFs. The cost-effective and long-term stability of (Cu-S)n MOF 2D nanosheets make them suitable for practical applications. Furthermore, the inhibition of the peroxidase-like activity of (Cu-S)n MOF nanosheets by glutathione (GSH) could provide a simple strategy for colorimetric detection of GSH against other amino acids. This work remarkably extends the utilization of (Cu-S)n MOF 2D nanosheets in biosensing, revealing the potential for 2D (Cu-S)n MOFs.
Assuntos
Estruturas Metalorgânicas , Peroxidase , Peroxidase/metabolismo , Estruturas Metalorgânicas/química , Peroxidases , Glutationa , ColorimetriaRESUMO
Depression is a highly prevalent and heterogeneous disorder that requires new strategies to overcome depression. In this study, we aimed to investigate whether leonurine modulated hippocampal nerve regeneration in chronic and unpredictable mild stress (CUMS) rats through the SHH/GLI signaling pathway and restoring gut microbiota and microbial metabolic homeostasis. The CUMS rat model was constructed and treated with leonurine. The body weight of rats was recorded, and a series of tests were performed. Western blot was utilized to measure the expression of BDNF and 5-HT in the hippocampus. Then the expression of SHH, GLI, PTCH, and SMO were measured by qRT-PCR and western blot. The colocalization of BrdU+DCX and BrdU+NeuN was evaluated by IF. 16S rDNA high-throughput sequencing was applied to detect the composition and distribution of gut microbiota. The differential metabolites were analyzed by untargeted metabolomics. The correlation between gut microbiota and microbial metabolites was analyzed by Pearson correlation coefficient. After CUMS modeling, the body weight of rats was decreased, and the expression of BDNF and 5-HT were decreased, while the body weight was recovered, and the expression of BDNF and 5-HT were increased after leonurine treatment. Leonurine reversed the reduction in the colocalization of BrdU+DCX and BrdU+NeuN and the reduction in the levels of SHH, GLI, PTCH, and SMO induced by CUMS modeling. Leonurine also restored gut microbiota and microbial metabolites homeostasis in CUMS rats. Furthermore, Prevotellaceae_Ga6A1_group was negatively correlated with 3-Oxocholic acid, nutriacholic acid, and cholic acid. Collectively, leonurine regulated hippocampal nerve regeneration in CUMS rats by activating the SHH/GLI signaling pathway and restoring gut microbiota and microbial metabolic homeostasis.
Assuntos
Depressão , Microbioma Gastrointestinal , Ratos , Animais , Depressão/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Serotonina/metabolismo , Bromodesoxiuridina/metabolismo , Regeneração Nervosa , Homeostase , Transdução de Sinais , Hipocampo/metabolismo , Peso Corporal , Estresse Psicológico/metabolismo , Modelos Animais de DoençasRESUMO
Inflammation underlies a variety of physiological and pathological processes and plays an essential role in shaping the ensuing adaptive immune responses and in the control of pathogens. However, its physiological functions are not completely clear. Using a LPS-treated RAW264.7 macrophage inflammation model, we found that the production of inflammatory cytokines in ISOC1-deficient cells was significantly higher than that in the control group. It was further proved that ISOC1 deficiency could activate AKT1, and the overactivation of AKT1 could reduce the stability of PEX11B through protein modification, thereby reducing the peroxisome biogenesis and thus affecting inflammation. In this study, we reported for the first time the role of ISOC1 in innate immunity and elucidated the mechanism by which ISOC1 regulates inflammation through AKT1/PEX11B/peroxisome. Our results defined a new role of ISOC1 in the regulatory mechanism underlying the LPS-induced inflammatory response.
Assuntos
Hidrolases/metabolismo , Lipopolissacarídeos , Peroxissomos , Animais , Citocinas/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Peroxissomos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismoRESUMO
Breast cancer is one of the leading causes of death worldwide, and synthetic chemicals targeting specific proteins or various molecular pathways for tumor suppression, such as ERK inhibitors and degraders, have been intensively investigated. The targets of ERK participate in the regulation of critical cellular mechanisms and underpin the progression of anticancer therapy. In this study, we identified a novel small molecule, which we named Z734, as a new mitogen-activated protein kinase 1 (ERK2) degrader and demonstrated that Z734 inhibits cell growth by inducing p53-mediated apoptotic pathways in human breast cancer cells. Treatment with Z734 resulted in the inhibition of cancer cell proliferation, colony formation and migration invasion, as well as cancer cell death via apoptosis. In addition, the Co-IP and GST pulldown assays indicated that the HECT and RLD domains containing E3 ubiquitin protein ligase 3 (HERC3) could directly interact with ERK2 through the HECT domain, promoting ERK2 ubiquitination. We also observed a strong link between HERC3 and p53 for the modulation of apoptosis. HERC3 can increase the protein and phosphorylation levels of p53, which further promotes apoptotic activity. In a xenograft mouse model, the effect was obtained in a treatment group that combined Z734 with lapatinib compared with that of the single-treatment groups. In summary, our results indicated that Z734 actively controls the development of breast cancer through apoptosis, and HERC3 may mediate ERK2 and p53 signaling, which offers new potential targets for clinical therapy.
Assuntos
Neoplasias da Mama , Proteína Quinase 1 Ativada por Mitógeno , Animais , Apoptose , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Células MCF-7 , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Fosforilação , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismoRESUMO
The continual spread of novel coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), posing a severe threat to the health worldwide. The main protease (Mpro, alias 3CLpro) of SARS-CoV-2 is a crucial enzyme for the maturation of viral particles and is a very attractive target for designing drugs to treat COVID-19. Here, we propose a multiple conformation-based virtual screening strategy to discover inhibitors that can target SARS-CoV-2 Mpro. Based on this strategy, nine Mpro structures and a protein mimetics library with 8960 commercially available compounds were prepared to carry out ensemble docking for the first time. Five of the nine structures are apo forms presented in different conformations, whereas the other four structures are holo forms complexed with different ligands. The surface plasmon resonance assay revealed that 6 out of 49 compounds had the ability to bind to SARS-CoV-2 Mpro. The fluorescence resonance energy transfer experiment showed that the biochemical half-maximal inhibitory concentration (IC50) values of the six compounds could hamper Mpro activities ranged from 0.69 ± 0.05 to 2.05 ± 0.92 µM. Evaluation of antiviral activity using the cell-based assay indicated that two compounds (Z1244904919 and Z1759961356) could strongly inhibit the cytopathic effect and reduce replication of the living virus in Vero E6 cells with the half-maximal effective concentrations (EC50) of 4.98 ± 1.83 and 8.52 ± 0.92 µM, respectively. The mechanism of the action for the two inhibitors were further elucidated at the molecular level by molecular dynamics simulation and subsequent binding free energy analysis. As a result, the discovered noncovalent reversible inhibitors with novel scaffolds are promising antiviral drug candidates, which may be used to develop the treatment of COVID-19.
Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Cisteína Endopeptidases , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Proteínas não Estruturais ViraisRESUMO
To analyze the research hotspots and trends of traditional Chinese medicine(TCM) for neurogenesis with use of CiteSpace 5.7.R3 software. The bibliometrics analysis on the literatures of TCM for neurogenesis from 1987 to 2020 included in the CNKI database was conducted to visualize the number of papers, authors, institutions and keywords. Totally 736 literatures were included and the volume of annual publications showed an upward in volatility. At present, several stable research teams have been formed, which were represented by DING Fei, ZHOU Chong-jian and ZHOU Yong-hong, but the cooperation was not close among the teams. According to the analysis of research institutions, Institute of Diagnostics of Hunan University of Chinese Medicine and Acupuncture Research Center of Tianjin University of Traditional Chinese Medicine produced largest number of literatures. The cooperation among institutions, with universities of TCM and affiliated hospitals as the main research force, was characterized by dominant cooperation among regional institutions and less cross-regional cooperation. Keywords analysis showed that in the field of TCM for neurogenesis, a lot of studies mainly focused on the disease field, treatment and medication, TCM therapy and molecular mechanism. The research on TCM therapy and molecular mechanism for neurogenesis of central nervous system will be the research hotspots in future.
Assuntos
Terapia por Acupuntura , Medicina Tradicional Chinesa , Bibliometria , Bases de Dados Factuais , NeurogêneseRESUMO
To explore the effect of Baihe Dihuang Decoction on the synaptic plasticity of hippocampal neurons in rats with anxious depression. Fifty SD rats were randomly divided into normal group, model group, venlafaxine group(6.75 mg·kg~(-1)), high-dose Baihe Dihuang Decoction group(8.64 g·kg~(-1)) and low-dose Baihe Dihuang Decoction group(4.32 g·kg~(-1)). Chronic restraint stress(6 h) combined with corticosterone(ih, 30 mg·kg~(-1)) was used to establish an anxious depression model, and 7 days after modeling, the administration started and continued for 21 days. The anxiety and depression-like behaviors of the rats were evaluated. Golgi-Cox staining and electron microscopy were used to observe the morphology and ultrastructural changes of synaptic dendrites. Immunofluorescence was used to detect the expression of hippocampal synaptic plasticity protein synapsin-1 and postsynaptic density protein 95(PSD-95). Western blot method was used to detect the expression of functional protein synaptophysin(SYP) and synaptic Ras GTPase activating protein(SynGap). The results showed that the rats in the model group had obvious anxiety and depression-like behaviors, the hip-pocampal dendritic spine density and branch length were reduced, the number of synapses was cut, and the internal structure was da-maged. The average fluorescence intensity of synapsin-1 and PSD-95 was significantly reduced and the expression of SYP and SynGap also decreased. High-dose Baihe Dihuang Decoction could significantly improve the anxiety and depression-like behaviors of model rats, relieve synaptic damage, and increase the expression of synapsin-1, PSD-95, SYP, and SynGap proteins. Therefore, we believe that Baihe Dihuang Decoction can improve anxiety and depression behaviors by regulating the synaptic plasticity of hippocampal neurons.
Assuntos
Depressão , Plasticidade Neuronal , Animais , Depressão/tratamento farmacológico , Hipocampo , Ratos , Ratos Sprague-Dawley , SinapsesRESUMO
Extracellular vesicles (EVs) have been identified as one of the communication mechanisms amongst embryos. They are secreted into the embryo culture medium and, as such, represent a source of novel biomarkers for identifying the quality of cells and embryos. However, only small amounts of embryo-conditioned medium are available, which represents a challenge for EV enrichment. Our aim is to assess the suitability of different EV separation methods to retrieve EVs with high specificity and sufficient efficiency. Bovine embryo-conditioned medium was subjected to differential ultracentrifugation (DU), OptiPrepTM density gradient (ODG) centrifugation, and size exclusion chromatography. Separated EVs were characterized by complementary characterization methods, including Western blot, electron microscopy, and nanoparticle tracking analysis, to assess the efficiency and specificity. OptiPrepTM density gradient centrifugation outperformed DU and SEC in terms of specificity by substantial removal of contaminating proteins such as ribonucleoprotein complexes (Argonaute-2 (AGO-2)) and lipoproteins (ApoA-I) from bovine embryo-derived EVs (density: 1.02-1.04, 1.20-1.23 g/mL, respectively). In conclusion, ODG centrifugation is the preferred method for identifying EV-enriched components and for improving our understanding of EV function in embryo quality and development.
Assuntos
Meios de Cultivo Condicionados/metabolismo , Embrião de Mamíferos/metabolismo , Vesículas Extracelulares/metabolismo , Animais , Bovinos , Centrifugação com Gradiente de Concentração , Fracionamento Químico/métodos , Cromatografia em Gel , Técnicas de Cultura Embrionária , Vesículas Extracelulares/ultraestrutura , Frações Subcelulares , UltracentrifugaçãoRESUMO
Extracellular vesicles (EVs) play a possible role in cellâ»cell communication and are found in various body fluids and cell conditioned culture media. The aim of this study was to isolate and characterize EVs in culture medium conditioned by bovine embryos in group and to verify if these EVs are functionally active. Initially, ultracentrifuged bovine serum albumin (BSA) containing medium was selected as suitable EV-free embryo culture medium. Next, EVs were isolated from embryo conditioned culture medium by OptiPrepTM density gradient ultracentrifugation. Isolated EVs were characterized by nanoparticle tracking analysis, western blotting, transmission, and immunoelectron microscopy. Bovine embryo-derived EVs were sizing between 25â»230 nm with an average concentration of 236.5 ± 1.27 × 108 particles/mL. Moreover, PKH67 EV pre-labeling showed that embryo-secreted EVs were uptaken by zona-intact bovine embryos. Since BSA did not appear to be a contaminating EV source in culture medium, EV functionality was tested in BSA containing medium. Individual embryo culture in BSA medium enriched with EVs derived from conditioned embryo culture medium showed significantly higher blastocyst rates at day 7 and 8 together with a significantly lower apoptotic cell ratio. In conclusion, our study shows that EVs play an important role in inter embryo communication during bovine embryo culture in group.
Assuntos
Fracionamento Celular , Meios de Cultivo Condicionados/metabolismo , Vesículas Extracelulares/metabolismo , Animais , Bovinos , Fracionamento Celular/métodos , Centrifugação com Gradiente de Concentração , Técnicas de Cultura Embrionária , Embrião de Mamíferos , Vesículas Extracelulares/ultraestruturaRESUMO
This paper aimed to predict the active ingredients and action targets of Compound Uncaria Hypotensive Tablet for hypertension based on network pharmacology, and discuss its possible "multi-components, multi-targets, and multi-pathways" mechanism for treatment of hypertension. The integrative pharmacological platform of traditional Chinese medicine (TCM-IP) was used to construct the component target-disease target network of Compound Uncaria Hypotensive Tablet, and the internet analysis method was used to screen the key nodes, on which the pathway enrichment analysis was carried out to explore its possible biological process in the treatment of hypertension. Target network analysis showed that, 35 predicted active ingredients of Compound Uncaria Hypotensive Tablet had a strong interaction with the prostaglandin endogenous peroxidase synthase (PTGS1, PTGS2), ATP synthetase (ATP1A1, ATP5A1, ATP5C1, ATP5B) and other 29 major proteins. Network enriched analysis showed that Compound Uncaria Hypotensive Tablet participated in the regulation of hypertension in different processes of pathology, through 15 pathways such as regulating blood pressure, G protein coupled receptor activation, adrenergic myocardial cell signal transduction and platelet activation. This study revealed the potential active compounds and possible mechanism of Compound Uncaria Hypotensive Tablet for treatment of hypertension, providing theoretical references for further systematic laboratory experiments on effective compounds and action mechanism of Compound Uncaria Hypotensive Tablet.
Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Hipertensão/tratamento farmacológico , Uncaria , Humanos , Medicina Tradicional Chinesa , Transdução de Sinais , ComprimidosRESUMO
Objective: This study aimed to explore the benefit finding (BF) profiles among informal caregivers of patients with lung cancer, identify demographic and disease characteristics, and analyze differences in caregiving ability between profiles. Methods: This cross-sectional study utilized convenience sampling to select 272 informal caregivers of patients with lung cancer from a tertiary care hospital in Guangzhou, China. The research instruments used included the Demographic and Disease Characteristics Questionnaire, the revised version of the BF Scale, and the Chinese version of the Family Caregiver Task Inventory. Data analysis was performed using latent profile analysis, chi-square test, Fisher's exact probability test, Kruskal-Wallis test, and multivariate logistic regression. Results: (1) BF can be divided into three profiles: "high benefit-family and personal growth" (Profile 1, 7.7%), "moderate benefit-unclear perception" (Profile 2, 44.9%), and "low benefit-coping ability deficient" (Profile 3, 47.4%). (2) Having a cocaregiver and a disease duration of 6-12 months were more likely to belong to Profile 1; caregivers of patients aged 40-60 years tended to belong to Profile 2; caregivers of older patients with disease duration > 12 months and clinical stage II or III were more likely to belong to Profile 3. (3) There were significant differences in the total score of caregiving ability and the scores of each dimension among the different BF profiles (P < 0.001), and the caregiving abilities of Profile 1 and Profile 2 were higher than those of Profile 3. Conclusions: There was heterogeneity in BF among informal caregivers of patients with lung cancer. Healthcare professionals can identify the key profiles of lung-cancer caregivers based on characteristics such as age, clinical stage, disease duration, and cocaregiver status and enhance their caregiving ability through targeted nursing guidance.
RESUMO
Objective: This study aims to explore the subgroups and networks of symptom clusters in breast cancer patients undergoing chemotherapy, and to provide effective interventions for the core symptoms. Methods: A cross-sectional survey was conducted at four comprehensive hospitals in Foshan City, China, from August to November 2023. A total of 292 participants completed the social determinants of health questionnaire, the numerical rating scale (NRS), the Pittsburgh sleep quality index (PSQI), the Chinese version of the cancer fatigue scale (CFS), and the hospital anxiety and depression Scale (HADS). Latent class analysis (LCA) was utilized to distinguish subgroups, and network analysis was utilized to identify core symptoms among different subgroups. Results: Breast cancer patients undergoing chemotherapy exhibit symptoms were divided into two subgroups: the high burden group of symptoms (72.3%, Class 1) and the low burden group of symptoms (27.7%, Class 2). Education attainment, work status, family monthly income per capita, and daily sleep duration (hours) were associated with subgroup membership. "Panic feelings" (# HADS-A11) were the core symptom in both the full sample and Class 2, while "tension or pain" (# HADS-A1) was the core symptom in Class 1. Conclusions: The core symptoms of fear, enjoyment, nervousness, and pain varied across subgroups of patients and could inform the current strategies for symptom management in breast cancer chemotherapy patients.
RESUMO
The gut microbiota plays a critical role in numerous biochemical processes essential for human health, such as metabolic regulation and immune system modulation. An increasing number of research suggests a strong association between the gut microbiota and carcinogenesis. The diverse metabolites produced by gut microbiota can modulate cellular gene expression, cell cycle dynamics, apoptosis, and immune system functions, thereby exerting a profound influence on cancer development and progression. A healthy gut microbiota promotes substance metabolism, stimulates immune responses, and thereby maintains the long-term homeostasis of the intestinal microenvironment. When the gut microbiota becomes imbalanced and disrupts the homeostasis of the intestinal microenvironment, the risk of various diseases increases. This review aims to elucidate the impact of gut microbial metabolites on cancer initiation and progression, focusing on short-chain fatty acids (SCFAs), polyamines (PAs), hydrogen sulfide (H2S), secondary bile acids (SBAs), and microbial tryptophan catabolites (MTCs). By detailing the roles and molecular mechanisms of these metabolites in cancer pathogenesis and therapy, this article sheds light on dual effects on the host at different concentrations of metabolites and offers new insights into cancer research.