RESUMO
Sponges (Porifera) contain many peptide-specialized metabolites with potent biological activities and significant roles in shaping marine ecology. It is well established that symbiotic bacteria produce bioactive "sponge" peptides, both on the ribosome (RiPPs) and nonribosomally. Here, we demonstrate that sponges themselves also produce many bioactive macrocyclic peptides, such as phakellistatins and related proline-rich macrocyclic peptides (PRMPs). Using the Stylissa carteri sponge transcriptome, methods were developed to find sequences encoding 46 distinct RiPP-type core peptides, of which ten encoded previously identified PRMP sequences. With this basis set, the genome and transcriptome of the sponge Axinella corrugata was interrogated to find 35 PRMP precursor peptides encoding 31 unique core peptide sequences. At least 11 of these produced cyclic peptides that were present in the sponge and could be characterized by mass spectrometry, including stylissamides A-D and seven previously undescribed compounds. Precursor peptides were encoded in the A. corrugata genome, confirming their animal origin. The peptides contained signal peptide sequences and highly repetitive recognition sequence-core peptide elements with up to 25 PRMP copies in a single precursor. In comparison to sponges without PRMPs, PRMP sponges are incredibly enriched in potentially secreted polypeptides, with >23,000 individual signal peptide encoding genes found in a single transcriptome. The similarities between PRMP biosynthetic genes and neuropeptides in terms of their biosynthetic logic suggest a fundamental biology linked to circular peptides, possibly indicating a widespread and underappreciated diversity of signaling peptide post-translational modifications across the animal kingdom.
Assuntos
Peptídeos Cíclicos , Peptídeos , Animais , Peptídeos/genética , Peptídeos Cíclicos/genética , Sequência de Aminoácidos , Bandagens , Sinais Direcionadores de ProteínasRESUMO
Animal cytoplasmic fatty acid synthase (FAS) represents a unique family of enzymes that are classically thought to be most closely related to fungal polyketide synthase (PKS). Recently, a widespread family of animal lipid metabolic enzymes has been described that bridges the gap between these two ubiquitous and important enzyme classes: the animal FAS-like PKSs (AFPKs). Although very similar in sequence to FAS enzymes that produce saturated lipids widely found in animals, AFPKs instead produce structurally diverse compounds that resemble bioactive polyketides. Little is known about the factors that bridge lipid and polyketide synthesis in the animals. Here, we describe the function of EcPKS2 from Elysia chlorotica, which synthesizes a complex polypropionate natural product found in this mollusc. EcPKS2 starter unit promiscuity potentially explains the high diversity of polyketides found in and among molluscan species. Biochemical comparison of EcPKS2 with the previously described EcPKS1 reveals molecular principles governing substrate selectivity that should apply to related enzymes encoded within the genomes of photosynthetic gastropods. Hybridization experiments combining EcPKS1 and EcPKS2 demonstrate the interactions between the ketoreductase and ketosynthase domains in governing the product outcomes. Overall, these findings enable an understanding of the molecular principles of structural diversity underlying the many molluscan polyketides likely produced by the diverse AFPK enzyme family.
Assuntos
Produtos Biológicos , Gastrópodes , Policetídeos , Animais , Policetídeo Sintases/genética , Ácido Graxo Sintases , LipídeosRESUMO
Vms1 translocates to damaged mitochondria in response to stress, whereupon its binding partner, Cdc48, contributes to mitochondrial protein homeostasis. Mitochondrial targeting of Vms1 is mediated by its conserved mitochondrial targeting domain (MTD), which, in unstressed conditions, is inhibited by intramolecular binding to the Vms1 leucine-rich sequence (LRS). Here, we report a 2.7 Å crystal structure of Vms1 that reveals that the LRS lies in a hydrophobic groove in the autoinhibited MTD. We also demonstrate that the oxidized sterol, ergosterol peroxide, is necessary and sufficient for Vms1 localization to mitochondria, through binding the MTD in an interaction that is competitive with binding to the LRS. These data support a model in which stressed mitochondria generate an oxidized sterol receptor that recruits Vms1 to support mitochondrial protein homeostasis.
Assuntos
Ergosterol/análogos & derivados , Mitocôndrias , Transporte Proteico , Saccharomyces cerevisiae , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Ergosterol/metabolismo , Mitocôndrias/química , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredução , Domínios Proteicos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
Diterpenes are major defensive small molecules that enable soft corals to survive without a tough exterior skeleton, and, until now, their biosynthetic origin has remained intractable. Furthermore, biomedical application of these molecules has been hampered by lack of supply. Here, we identify and characterize coral-encoded terpene cyclase genes that produce the eunicellane precursor of eleutherobin and cembrene, representative precursors for the >2,500 terpenes found in octocorals. Related genes are found in all sequenced octocorals and form their own clade, indicating a potential ancient origin concomitant with the split between the hard and soft corals. Eleutherobin biosynthetic genes are colocalized in a single chromosomal region. This demonstrates that, like plants and microbes, animals also harbor defensive biosynthetic gene clusters, supporting a recombinational model to explain why specialized or defensive metabolites are adjacently encoded in the genome.
Assuntos
Antozoários , Terpenos , Animais , Antozoários/genética , Antozoários/metabolismo , Cromossomos , Genoma , Família Multigênica , Terpenos/metabolismoRESUMO
Nearly every animal species on Earth contains a unique polyketide synthase (PKS) encoded in its genome, yet no animal-clade PKS has been biochemically characterized, and even the chemical products of these ubiquitous enzymes are known in only a few cases. The earliest animal genome-encoded PKS gene to be identified was SpPks1 from sea urchins. Previous genetic knockdown experiments implicated SpPks1 in synthesis of the sea urchin pigment echinochrome. Here, we express and purify SpPks1, performing biochemical experiments to demonstrate that the sea urchin protein is responsible for the synthesis of 2-acetyl-1,3,6,8-tetrahydroxynaphthalene (ATHN). Since ATHN is a plausible precursor of echinochromes, this result defines a biosynthetic pathway to the ubiquitous echinoderm pigments and rewrites the previous hypothesis for echinochrome biosynthesis. Truncation experiments showed that, unlike other type I iterative PKSs so far characterized, SpPks1 produces the naphthalene core using solely ketoacylsynthase (KS), acyltransferase, and acyl carrier protein domains, delineating a unique class of animal nonreducing aromatic PKSs (aPKSs). A series of amino acids in the KS domain define the family and are likely crucial in cyclization activity. Phylogenetic analyses indicate that SpPks1 and its homologs are widespread in echinoderms and their closest relatives, the acorn worms, reinforcing their fundamental importance to echinoderm biology. While the animal microbiome is known to produce aromatic polyketides, this work provides biochemical evidence that animals themselves also harbor ancient, convergent, dedicated pathways to carbocyclic aromatic polyketides. More fundamentally, biochemical analysis of SpPks1 begins to define the vast and unexplored biosynthetic space of the ubiquitous animal PKS family.
Assuntos
Policetídeo Sintases , Policetídeos , Animais , Naftalenos , Filogenia , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Ouriços-do-Mar/metabolismoRESUMO
Apicomplexan parasites cause severe disease in both humans and their domesticated animals. Since these parasites readily develop drug resistance, development of new, effective drugs to treat infection caused by these parasites is an ongoing challenge for the medical and veterinary communities. We hypothesized that invertebrate-bacterial symbioses might be a rich source of anti-apicomplexan compounds because invertebrates are susceptible to infections with gregarines, parasites that are ancestral to all apicomplexans. We chose to explore the therapeutic potential of shipworm symbiotic bacteria as they are bona fide symbionts, are easily grown in axenic culture and have genomes rich in secondary metabolite loci [1,2]. Two strains of the shipworm symbiotic bacterium, Teredinibacter turnerae, were screened for activity against Toxoplasma gondii and one strain, T7901, exhibited activity against intracellular stages of the parasite. Bioassay-guided fractionation identified tartrolon E (trtE) as the source of the activity. TrtE has an EC50 of 3 nM against T. gondii, acts directly on the parasite itself and kills the parasites after two hours of treatment. TrtE exhibits nanomolar to picomolar level activity against Cryptosporidium, Plasmodium, Babesia, Theileria, and Sarcocystis; parasites representing all branches of the apicomplexan phylogenetic tree. The compound also proved effective against Cryptosporidium parvum infection in neonatal mice, indicating that trtE may be a potential lead compound for preclinical development. Identification of a promising new compound after such limited screening strongly encourages further mining of invertebrate symbionts for new anti-parasitic therapeutics.
Assuntos
Antiprotozoários , Apicomplexa/crescimento & desenvolvimento , Bivalves/microbiologia , Gammaproteobacteria/metabolismo , Simbiose , Animais , Antiprotozoários/metabolismo , Antiprotozoários/farmacologia , Camundongos , Infecções por Protozoários/tratamento farmacológicoRESUMO
Marine sponges are prolific sources of bioactive natural products, several of which are produced by bacteria symbiotically associated with the sponge host. Bacteria-derived natural products, and the specialized bacterial symbionts that synthesize them, are not shared among phylogenetically distant sponge hosts. This is in contrast to nonsymbiotic culturable bacteria in which the conservation of natural products and natural product biosynthetic gene clusters (BGCs) is well established. Here, we demonstrate the widespread conservation of a BGC encoding a cryptic ribosomally synthesized and post-translationally modified peptide (RiPP) in microbiomes of phylogenetically and geographically dispersed sponges from the Pacific and Atlantic oceans. Detection of this BGC was enabled by mining for halogenating enzymes in sponge metagenomes, which, in turn, allowed for the description of a broad-spectrum regiospecific peptidyl tryptophan-6-brominase which possessed no chlorination activity. In addition, we demonstrate the cyclodehydrative installation of azoline heterocycles in proteusin RiPPs. This is the first demonstration of halogenation and cyclodehydration for proteusin RiPPs and the enzymes catalyzing these transformations were found to competently interact with other previously described proteusin substrate peptides. Within a sponge microbiome, many different generalized bacterial taxa harbored this BGC with often more than 50 copies of the BGC detected in individual sponge metagenomes. Moreover, the BGC was found in all sponges queried that possess high diversity microbiomes but it was not detected in other marine invertebrate microbiomes. These data shed light on conservation of cryptic natural product biosynthetic potential in marine sponges that was not detected by traditional natural product-to-BGC (meta)genome mining.
Assuntos
Bactérias/enzimologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Microbiota/fisiologia , Poríferos/microbiologia , Sequência de Aminoácidos , Animais , Produtos Biológicos , Metagenoma , Família MultigênicaRESUMO
Calcium homeostasis is implicated in some cancers, leading to the possibility that selective control of calcium might lead to new cancer drugs. On the basis of this idea, we designed an assay using a glioblastoma cell line and screened a collection of 1000 unique bacterial extracts. Isolation of the active compound from a hit extract led to the identification of boholamide A (1), a 4-amido-2,4-pentadieneoate (APD)-class peptide. Boholamide A (1) applied in the nanomolar range induces an immediate influx of Ca2+ in glioblastoma and neuronal cells. APD-class natural products are hypoxia-selective cytotoxins that primarily target mitochondria. Like other APD-containing compounds, 1 is hypoxia selective. Since APD natural products have received significant interest as potential chemotherapeutic agents, 1 provides a novel APD scaffold for the development of new anticancer compounds.
Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Cálcio/metabolismo , Citotoxinas/farmacologia , Depsipeptídeos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Cálcio/química , Citotoxinas/química , Depsipeptídeos/química , Depsipeptídeos/isolamento & purificação , Hipóxia/fisiopatologia , Estrutura Molecular , NeoplasiasRESUMO
The "wooden-steps" hypothesis [Distel DL, et al. (2000) Nature 403:725-726] proposed that large chemosynthetic mussels found at deep-sea hydrothermal vents descend from much smaller species associated with sunken wood and other organic deposits, and that the endosymbionts of these progenitors made use of hydrogen sulfide from biogenic sources (e.g., decaying wood) rather than from vent fluids. Here, we show that wood has served not only as a stepping stone between habitats but also as a bridge between heterotrophic and chemoautotrophic symbiosis for the giant mud-boring bivalve Kuphus polythalamia This rare and enigmatic species, which achieves the greatest length of any extant bivalve, is the only described member of the wood-boring bivalve family Teredinidae (shipworms) that burrows in marine sediments rather than wood. We show that K. polythalamia harbors sulfur-oxidizing chemoautotrophic (thioautotrophic) bacteria instead of the cellulolytic symbionts that allow other shipworm species to consume wood as food. The characteristics of its symbionts, its phylogenetic position within Teredinidae, the reduction of its digestive system by comparison with other family members, and the loss of morphological features associated with wood digestion indicate that K. polythalamia is a chemoautotrophic bivalve descended from wood-feeding (xylotrophic) ancestors. This is an example in which a chemoautotrophic endosymbiosis arose by displacement of an ancestral heterotrophic symbiosis and a report of pure culture of a thioautotrophic endosymbiont.
Assuntos
Bactérias/metabolismo , Bivalves/microbiologia , Crescimento Quimioautotrófico/fisiologia , Simbiose/fisiologia , Madeira/metabolismo , Animais , Madeira/microbiologiaRESUMO
Naturally produced polybrominated diphenyl ethers (PBDEs) pervade the marine environment and structurally resemble toxic man-made brominated flame retardants. PBDEs bioaccumulate in marine animals and are likely transferred to the human food chain. However, the biogenic basis for PBDE production in one of their most prolific sources, marine sponges of the order Dysideidae, remains unidentified. Here, we report the discovery of PBDE biosynthetic gene clusters within sponge-microbiome-associated cyanobacterial endosymbionts through the use of an unbiased metagenome-mining approach. Using expression of PBDE biosynthetic genes in heterologous cyanobacterial hosts, we correlate the structural diversity of naturally produced PBDEs to modifications within PBDE biosynthetic gene clusters in multiple sponge holobionts. Our results establish the genetic and molecular foundation for the production of PBDEs in one of the most abundant natural sources of these molecules, further setting the stage for a metagenomic-based inventory of other PBDE sources in the marine environment.
Assuntos
Produtos Biológicos/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Éteres Difenil Halogenados/metabolismo , Metagenômica , Poríferos/metabolismo , Animais , Produtos Biológicos/química , Éteres Difenil Halogenados/química , Estrutura MolecularRESUMO
Fungi from the order Onygenales include human pathogens. Although secondary metabolites are critical for pathogenic interactions, relatively little is known about Onygenales compounds. Here, we use chemical and genetic methods on Aioliomyces pyridodomos, the first representative of a candidate new family within Onygenales. We isolated 14 new bioactive metabolites, nine of which are first disclosed here. Thirty-two specialized metabolite biosynthetic gene clusters (BGCs) were identified. BGCs were correlated to some of the new compounds by heterologous expression of biosynthetic genes. Some of the compounds were found after one year of fermentation. By comparing BGCs from A. pyridodomos with those from 68 previously sequenced Onygenales fungi, we delineate a large biosynthetic potential. Most of these biosynthetic pathways are specific to Onygenales fungi and have not been found elsewhere. Family level specificity and conservation of biosynthetic gene content are evident within Onygenales. Identification of these compounds may be important to understanding pathogenic interactions.
Assuntos
Vias Biossintéticas/genética , Fungos/química , Onygenales/metabolismo , Humanos , Estrutura Molecular , Família Multigênica , Onygenales/químicaRESUMO
Three new pyoluteorin analogues, mindapyrroles A-C (1-3), were purified from Pseudomonas aeruginosa strain 1682U.R.0a.27, a gill-associated bacterium isolated from the tissue homogenate of the giant shipworm Kuphus polythalamius. Mindapyrroles B and C inhibit the growth of multiple pathogenic bacteria, with mindapyrrole B (2) showing the most potent antimicrobial activity and widest selectivity index over mammalian cells. Preliminary structure-activity relationship analysis showed that dimerization of the pyoluteorin moiety through a C-C linkage is detrimental to the antimicrobial activity, but addition of an aerugine unit in the methylene bridge is favorable for both the antimicrobial activity and selectivity index.
Assuntos
Bivalves/química , Pseudomonas aeruginosa/química , Pirróis/isolamento & purificação , Animais , Anti-Infecciosos/farmacologia , Pirróis/química , Pirróis/farmacologiaRESUMO
Prenylation is a widespread modification that improves the biological activities of secondary metabolites. This reaction also represents a key modification step in biosyntheses of cyanobactins, a family of ribosomally synthesized and post-translationally modified peptides (RiPPs) produced by cyanobacteria. In cyanobactins, amino acids are commonly isoprenylated by ABBA prenyltransferases that use C5 donors. Notably, mass spectral analysis of piricyclamides from a fresh-water cyanobacterium suggested that they may instead have a C10 geranyl group. Here we characterize a novel geranyltransferase involved in piricyclamide biosynthesis. Using the purified enzyme, we show that the enzyme PirF catalyzes Tyr O-geranylation, which is an unprecedented post-translational modification. In addition, the combination of enzymology and analytical chemistry revealed the structure of the final natural product, piricyclamide 7005E1, and the regioselectivity of PirF, which has potential as a synthetic biological tool providing drug-like properties to diverse small molecules.
Assuntos
Geraniltranstransferase/metabolismo , Peptídeos Cíclicos/biossíntese , Processamento de Proteína Pós-Traducional , Tirosina/metabolismo , Cianobactérias/química , Cianobactérias/metabolismo , Geraniltranstransferase/isolamento & purificação , Peptídeos Cíclicos/químicaRESUMO
Microbes encode many uncharacterized gene clusters that may produce antibiotics and other bioactive small molecules. Methods for activating these genes are needed to explore their biosynthetic potential. A transposon containing an inducible promoter was randomly inserted into the genome of the soil bacterium Burkholderia thailandensis to induce antibiotic expression. This screen identified the polyketide/nonribosomal peptide thailandamide as an antibiotic and discovered its regulator, AtsR. Mutants of Salmonella resistant to thailandamide had mutations in the accA gene for acetyl coenzyme A (acetyl-CoA) carboxylase, which is one of the first enzymes in the fatty acid synthesis pathway. A second copy of accA in the thailandamide synthesis gene cluster keeps B. thailandensis resistant to its own antibiotic. These genetic techniques will likely be powerful tools for discovering other unusual antibiotics.
Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Ácidos Graxos/biossíntese , Ácidos Graxos/genética , Policetídeos/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Burkholderia/genética , Burkholderia/metabolismo , Ácidos Graxos/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Regiões Promotoras Genéticas/genéticaRESUMO
We report an unusual 3-substituted pyridine polyketide, onydecalin A (1), which was obtained along with 2 as a major constituent from the fungus Aioliomyces pyridodomos (order: Onygenales) following a two-month fermentation. Feeding studies demonstrated that the pyridine subunit originates via an unprecedented biosynthetic process in comparison to other polyketide-linked pyridines or derivatives such as pyridones. The slow growth of the fungus led us to perform a one-year fermentation, leading to production of compounds 2-4 as the major constituents. These compounds showed modest but selective inhibition against a variety of transient receptor potential channels, as well as against the human pathogenic fungus Histoplasma capsulatum.
Assuntos
Ascomicetos/química , Produtos Biológicos/farmacologia , Histoplasma/efeitos dos fármacos , Policetídeos/farmacologia , Canais de Potencial de Receptor Transitório/metabolismo , Produtos Biológicos/química , Fermentação , Histoplasmose/microbiologia , Humanos , Estrutura Molecular , Policetídeos/química , Policetídeos/isolamento & purificaçãoRESUMO
Recent innovations in peptide natural product biosynthesis reveal a surprising wealth of previously uncharacterized biochemical reactions that have potential applications in synthetic biology. Among these, the cyanobactins are noteworthy because these peptides are protected at their N- and C-termini by macrocyclization. Here, we use a novel bifunctional enzyme AgeMTPT to protect linear peptides by attaching prenyl and methyl groups at their free N- and C-termini. Using this peptide protectase in combination with other modular biosynthetic enzymes, we describe the total synthesis of the natural product aeruginosamide B and the biosynthesis of linear cyanobactin natural products. Our studies help to define the enzymatic mechanism of macrocyclization, providing evidence against the water exclusion hypothesis of transpeptidation and favoring the kinetic lability hypothesis.
Assuntos
Produtos Biológicos/metabolismo , Metiltransferases/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Transferases/metabolismo , Produtos Biológicos/química , Metiltransferases/química , Conformação Molecular , Peptídeo Hidrolases/química , Peptídeos/química , Transferases/químicaRESUMO
Serotonin (5-HT) receptors are important in health and disease, but the existence of 14 subtypes necessitates selective ligands. Previously, the pulicatins were identified as ligands that specifically bound to the subtype 5-HT2B in the 500 nM to 10 µM range and that exhibited in vitro effects on cultured mouse neurons. Here, we examined the structure-activity relationship of 30 synthetic and natural pulicatin derivatives using binding, receptor functionality, and in vivo assays. The results reveal the 2-arylthiazoline scaffold as a tunable serotonin receptor-targeting pharmacophore. Tests in mice show potential antiseizure and antinociceptive activities at high doses without motor impairment.
Assuntos
Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Receptores de Serotonina/química , Receptores de Serotonina/metabolismo , Tiazolidinas/isolamento & purificação , Tiazolidinas/farmacologia , Animais , Ligantes , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade , Tiazolidinas/química , Tiazolidinas/metabolismoRESUMO
UNLABELLED: Diversity-generating metabolism leads to the evolution of many different chemicals in living organisms. Here, by examining a marine symbiosis, we provide a precise evolutionary model of how nature generates a family of novel chemicals, the cyanobactins. We show that tunicates and their symbiotic Prochloron cyanobacteria share congruent phylogenies, indicating that Prochloron phylogeny is related to host phylogeny and not to external habitat or geography. We observe that Prochloron exchanges discrete functional genetic modules for cyanobactin secondary metabolite biosynthesis in an otherwise conserved genetic background. The module exchange leads to gain or loss of discrete chemical functional groups. Because the underlying enzymes exhibit broad substrate tolerance, discrete exchange of substrates and enzymes between Prochloron strains leads to the rapid generation of chemical novelty. These results have implications in choosing biochemical pathways and enzymes for engineered or combinatorial biosynthesis. IMPORTANCE: While most biosynthetic pathways lead to one or a few products, a subset of pathways are diversity generating and are capable of producing thousands to millions of derivatives. This property is highly useful in biotechnology since it enables biochemical or synthetic biological methods to create desired chemicals. A fundamental question has been how nature itself creates this chemical diversity. Here, by examining the symbiosis between coral reef animals and bacteria, we describe the genetic basis of chemical variation with unprecedented precision. New compounds from the cyanobactin family are created by either varying the substrate or importing needed enzymatic functions from other organisms or via both mechanisms. This natural process matches successful laboratory strategies to engineer the biosynthesis of new chemicals and teaches a new strategy to direct biosynthesis.
Assuntos
Produtos Biológicos/metabolismo , Prochloron/fisiologia , Simbiose , Urocordados/microbiologia , Animais , Redes e Vias Metabólicas , Prochloron/metabolismo , Metabolismo SecundárioRESUMO
The programming of the fungal polyketide synthase (PKS) is quite complex, with a simple domain architecture leading to elaborate products. An additional level of complexity has been found within PKS-based pathways where the PKS is fused to a single module nonribosomal peptide synthetase (NRPS) to synthesize polyketides conjugated to amino acids. Here, we sought to understand the communication between these modules that enable correct formation of polyketide-peptide hybrid products. To do so, we fused together the genes that are responsible for forming five highly chemically diverse fungal natural products in a total of 57 different combinations, comprising 34 distinct module swaps. Gene fusions were formed with the idea of testing the connection and compatibility of the PKS and NRPS modules mediated by the acyl carrier protein (ACP), condensation (C) and ketoreductase (KR) domains. The resulting recombinant gene fusions were analyzed in a high-yielding expression platform to avail six new compounds, including the first successful fusion between a PKS and NRPS that make highly divergent products, and four previously reported molecules. Our results show that C domains are highly selective for a subset of substrates. We discovered that within the highly reducing (hr) PKS class, noncognate ACPs of closely related members complement PKS function. We intercepted a pre-Diels-Alder intermediate in lovastatin synthesis for the first time, shedding light on this canonical fungal biochemical reaction. The results of these experiments provide a set of ground rules for the successful engineering of hr-PKS and PKS-NRPS products in fungi.