Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 620(7976): 1047-1053, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37459895

RESUMO

Zygotic genome activation (ZGA) activates the quiescent genome to enable the maternal-to-zygotic transition1,2. However, the identity of transcription factors that underlie mammalian ZGA in vivo remains elusive. Here we show that OBOX, a PRD-like homeobox domain transcription factor family (OBOX1-OBOX8)3-5, are key regulators of mouse ZGA. Mice deficient for maternally transcribed Obox1/2/5/7 and zygotically expressed Obox3/4 had a two-cell to four-cell arrest, accompanied by impaired ZGA. The Obox knockout defects could be rescued by restoring either maternal and zygotic OBOX, which suggests that maternal and zygotic OBOX redundantly support embryonic development. Chromatin-binding analysis showed that Obox knockout preferentially affected OBOX-binding targets. Mechanistically, OBOX facilitated the 'preconfiguration' of RNA polymerase II, as the polymerase relocated from the initial one-cell binding targets to ZGA gene promoters and distal enhancers. Impaired polymerase II preconfiguration in Obox mutants was accompanied by defective ZGA and chromatin accessibility transition, as well as aberrant activation of one-cell polymerase II targets. Finally, ectopic expression of OBOX activated ZGA genes and MERVL repeats in mouse embryonic stem cells. These data thus demonstrate that OBOX regulates mouse ZGA and early embryogenesis.


Assuntos
Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Proteínas de Homeodomínio , Fatores de Transcrição , Zigoto , Animais , Camundongos , Cromatina/genética , Cromatina/metabolismo , Desenvolvimento Embrionário/genética , Elementos Facilitadores Genéticos/genética , Genoma/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Mutação , Regiões Promotoras Genéticas/genética , RNA Polimerase II/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zigoto/metabolismo
2.
Mol Cell ; 79(2): 234-250.e9, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32579944

RESUMO

Somatic cell nuclear transfer (SCNT) can reprogram a somatic nucleus to a totipotent state. However, the re-organization of 3D chromatin structure in this process remains poorly understood. Using low-input Hi-C, we revealed that, during SCNT, the transferred nucleus first enters a mitotic-like state (premature chromatin condensation). Unlike fertilized embryos, SCNT embryos show stronger topologically associating domains (TADs) at the 1-cell stage. TADs become weaker at the 2-cell stage, followed by gradual consolidation. Compartments A/B are markedly weak in 1-cell SCNT embryos and become increasingly strengthened afterward. By the 8-cell stage, somatic chromatin architecture is largely reset to embryonic patterns. Unexpectedly, we found cohesin represses minor zygotic genome activation (ZGA) genes (2-cell-specific genes) in pluripotent and differentiated cells, and pre-depleting cohesin in donor cells facilitates minor ZGA and SCNT. These data reveal multi-step reprogramming of 3D chromatin architecture during SCNT and support dual roles of cohesin in TAD formation and minor ZGA repression.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Cromatina/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Técnicas de Transferência Nuclear , Zigoto/fisiologia , Animais , Linhagem Celular , Núcleo Celular , Montagem e Desmontagem da Cromatina , Biologia Computacional/métodos , Conjuntos de Dados como Assunto , Desenvolvimento Embrionário , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Coesinas
3.
Mol Cell ; 77(4): 825-839.e7, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31837995

RESUMO

In mammals, chromatin organization undergoes drastic reorganization during oocyte development. However, the dynamics of three-dimensional chromatin structure in this process is poorly characterized. Using low-input Hi-C (genome-wide chromatin conformation capture), we found that a unique chromatin organization gradually appears during mouse oocyte growth. Oocytes at late stages show self-interacting, cohesin-independent compartmental domains marked by H3K27me3, therefore termed Polycomb-associating domains (PADs). PADs and inter-PAD (iPAD) regions form compartment-like structures with strong inter-domain interactions among nearby PADs. PADs disassemble upon meiotic resumption from diplotene arrest but briefly reappear on the maternal genome after fertilization. Upon maternal depletion of Eed, PADs are largely intact in oocytes, but their reestablishment after fertilization is compromised. By contrast, depletion of Polycomb repressive complex 1 (PRC1) proteins attenuates PADs in oocytes, which is associated with substantial gene de-repression in PADs. These data reveal a critical role of Polycomb in regulating chromatin architecture during mammalian oocyte growth and early development.


Assuntos
Cromatina/química , Oócitos/crescimento & desenvolvimento , Oogênese/genética , Proteínas do Grupo Polycomb/fisiologia , Animais , Blastocisto/química , Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Embrião de Mamíferos/química , Inativação Gênica , Código das Histonas , Camundongos , Oócitos/química , Transcrição Gênica , Coesinas
4.
Nature ; 587(7832): 139-144, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33116310

RESUMO

Zygotic genome activation (ZGA) is the first transcription event in life1. However, it is unclear how RNA polymerase is engaged in initiating ZGA in mammals. Here, by developing small-scale Tn5-assisted chromatin cleavage with sequencing (Stacc-seq), we investigated the landscapes of RNA polymerase II (Pol II) binding in mouse embryos. We found that Pol II undergoes 'loading', 'pre-configuration', and 'production' during the transition from minor ZGA to major ZGA. After fertilization, Pol II is preferentially loaded to CG-rich promoters and accessible distal regions in one-cell embryos (loading), in part shaped by the inherited parental epigenome. Pol II then initiates relocation to future gene targets before genome activation (pre-configuration), where it later engages in full transcription elongation upon major ZGA (production). Pol II also maintains low poising at inactive promoters after major ZGA until the blastocyst stage, coinciding with the loss of promoter epigenetic silencing factors. Notably, inhibition of minor ZGA impairs the Pol II pre-configuration and embryonic development, accompanied by aberrant retention of Pol II and ectopic expression of one-cell targets upon major ZGA. Hence, stepwise transition of Pol II occurs when mammalian life begins, and minor ZGA has a key role in the pre-configuration of transcription machinery and chromatin for genome activation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Genoma/genética , RNA Polimerase II/metabolismo , Zigoto/metabolismo , Alelos , Animais , Cromatina/genética , Cromatina/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/enzimologia , Embrião de Mamíferos/metabolismo , Epigenoma/genética , Feminino , Masculino , Herança Materna/genética , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/enzimologia , Oócitos/metabolismo , Regiões Promotoras Genéticas/genética , RNA Polimerase II/genética , Zigoto/citologia , Zigoto/enzimologia
5.
Nature ; 560(7718): E27, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29925957

RESUMO

In this Letter, the 'Open chromatin' label in Fig. 4a should have been centred above the first three columns, and the black horizontal line underneath the label should have been removed. In addition, there should have been a vertical black line between the last two sets of panels for consistency. Minor changes have also been made to Fig. 1 and to the legend of Fig. 3. These errrors have been corrected online, and see Supplementary Information to the accompanying Amendment for the original Fig. 4.

6.
Nature ; 557(7704): 256-260, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29720659

RESUMO

Upon fertilization, drastic chromatin reorganization occurs during preimplantation development 1 . However, the global chromatin landscape and its molecular dynamics in this period remain largely unexplored in humans. Here we investigate chromatin states in human preimplantation development using an improved assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) 2 . We find widespread accessible chromatin regions in early human embryos that overlap extensively with putative cis-regulatory sequences and transposable elements. Integrative analyses show both conservation and divergence in regulatory circuitry between human and mouse early development, and between human pluripotency in vivo and human embryonic stem cells. In addition, we find widespread open chromatin regions before zygotic genome activation (ZGA). The accessible chromatin loci are readily found at CpG-rich promoters. Unexpectedly, many others reside in distal regions that overlap with DNA hypomethylated domains in human oocytes and are enriched for transcription factor-binding sites. A large portion of these regions then become inaccessible after ZGA in a transcription-dependent manner. Notably, such extensive chromatin reorganization during ZGA is conserved in mice and correlates with the reprogramming of the non-canonical histone mark H3K4me3, which is uniquely linked to genome silencing3-5. Taken together, these data not only reveal a conserved principle that underlies the chromatin transition during mammalian ZGA, but also help to advance our understanding of epigenetic reprogramming during human early development and in vitro fertilization.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Epigênese Genética , Genoma/genética , Zigoto/metabolismo , Animais , Sítios de Ligação , Ilhas de CpG/genética , Metilação de DNA , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Células-Tronco Embrionárias/citologia , Feminino , Inativação Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Camundongos , Oócitos/citologia , Oócitos/metabolismo , Células-Tronco Pluripotentes/citologia , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Transposases/metabolismo
7.
FASEB J ; 31(8): 3677-3688, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28487281

RESUMO

Dynamic changes in the actin network are crucial for the cortical migration of spindles and establishment of polarity, to ensure asymmetric division during meiotic maturation. In this study, filamin A (FLNA) was found to be an essential actin regulator that controlled spindle migration and asymmetric division during oocyte meiosis. FLNA was localized in the cytoplasm and enriched at the cortex and near the chromosomes. Knockdown of FLNA impaired meiotic asymmetric division and spindle migration with a decrease in the amount of cytoplasmic actin mesh and cortical actin levels. Moreover, FLNA knockdown reduced the phosphorylation of cofilin and Rho kinase (ROCK) near the spindle. Similar phenotypes, such as decreased filament actin levels, impaired spindle migration and polar body extrusion, were observed when active cofilin (S3A) was overexpressed or ROCK was inhibited. Notably, we found that FLNA and ROCK interacted directly in mouse oocytes. Taken together, our results show that FLNA plays crucial roles in asymmetric division during meiotic maturation by regulating ROCK-cofilin-mediated actin reorganization.-Wang, H., Guo J., Lin, Z., Namgoong, S., Oh, J. S., Kim, N.-H. Filamin A is required for spindle migration and asymmetric division in mouse oocytes.


Assuntos
Divisão Celular/fisiologia , Filaminas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Oócitos/fisiologia , Fuso Acromático/fisiologia , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Animais , Clonagem Molecular , Citoplasma/química , Feminino , Filaminas/genética , Técnicas de Silenciamento de Genes , Camundongos , Oócitos/citologia , Transporte Proteico , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
8.
Mol Hum Reprod ; 23(3): 166-176, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28364522

RESUMO

Study question: What is the function of Spindlin 1 (Spin1) in metaphase II stage oocytes in pigs? Summary answer: Depletion of Spin1 induces spontaneous oocyte activation and overexpression of Spin1 causes multinuclear formation through induction of DNA damage in porcine oocytes. What is known already: Little is known about the function of Spin1 in oocytes and embryos. In mouse oocytes, Spin1 is specifically expressed during gametogenesis and is essential for meiotic resumption. In somatic cells, Spin1 promotes cancer cell proliferation and activates WNT/T-cell factor signaling. Study design size, duration: After knockdown (KD) or overexpression of Spin1 in porcine MII-stage oocytes, MII maintenance was checked following additional culture for 24 h. Investigated parthenotes were cultured up to the four cell (72 h) or blastocyst (7 days) stages. Participants/materials, setting, methods: Spin1 was knocked down in porcine oocytes and embryos via microinjection of pig Spin1-targeting siRNA. For Spin1 overexpression, porcine Spin1-eGFP cRNA was generated. Additionally, for rescue experiments, cRNA encoding siRNA-resistant mouse Spin1 was added to the pig Spin1-targeting siRNA. For the overexpression and rescue experiments, microinjection and culture were performed using the same methods as the KD experiments. Main results and the role of chance: KD of Spin1 in MII-stage porcine oocytes reduced metaphase-promoting factor and mitogen-activated protein kinase activities, resulting in spontaneous pronuclear formation without calcium activation. However, the DNA damage response was triggered by Spin1 overexpression, generating the checkpoint protein γH2A.X. Furthermore, Spin1 overexpression blocked metaphase-anaphase transition and led to multinucleation in oocytes and embryos. Large scale data: None. Limitations, reasons for caution: This study is based on in vitro investigations with abnormal expression levels of Spin1. This may or may not accurately reflect the situation in vivo. Wider implications of the findings: Spin1 is essential to maintain MII arrest, but a high level of Spin1 induces DNA damage in oocytes and embryos. Thus, a system to accurately regulate Spin1 expression operates in porcine MII-stage oocytes and embryos. Study funding and competing interest(s): This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2015R1D1A1A01057629). The authors declare no competing financial interests.


Assuntos
Blastocisto/metabolismo , Proteínas de Ciclo Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Metáfase , Proteínas Associadas aos Microtúbulos/genética , Oócitos/metabolismo , Fosfoproteínas/genética , Animais , Blastocisto/citologia , Cálcio/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Instabilidade Cromossômica , Dano ao DNA , Embrião de Mamíferos , Feminino , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oócitos/citologia , Oócitos/crescimento & desenvolvimento , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Suínos
9.
Histochem Cell Biol ; 145(1): 93-104, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26464247

RESUMO

LINE-1 is an autonomous non-LTR retrotransposon in mammalian genomes and encodes ORF1P and ORF2P. ORF2P has been clearly identified as the enzyme supplier needed in LINE-1 retrotransposition. However, the role of ORF1P is not well explored. In this study, we employed loss/gain-of-function approach to investigate the role of LINE1-ORF1P in mouse oocyte meiotic maturation. During mouse oocyte development, ORF1P was observed in cytoplasm as well as in nucleus at germinal vesicle (GV) stage while was localized on the spindle after germinal vesicle breakdown (GVBD). Depletion of ORF1P caused oocyte arrest at the GV stage as well as down-regulation of CDC2 and CYCLIN B1, components of the maturation-promoting factor (MPF). Further analysis demonstrated ORF1P depletion triggered DNA damage response and most of the oocytes presented altered chromatin configuration. In addition, SMAD4 showed nuclear foci signal after Orf1p dsRNA injection. ORF1P overexpression held the oocyte development at MI stage and the chromosome alignment and spindle organization were severely affected. We also found that ORF1P could form DCP1A body-like foci structure in both cytoplasm and nucleus after heat shock. Taken together, accurate regulation of ORF1P plays an essential role in mouse oocyte meiotic maturation.


Assuntos
Elementos Nucleotídeos Longos e Dispersos/genética , Meiose/genética , Oócitos/citologia , Oogênese/fisiologia , Proteínas de Ligação a RNA/metabolismo , Animais , Proteína Quinase CDC2/metabolismo , Ciclina B1/metabolismo , Reparo do DNA/genética , Endorribonucleases/metabolismo , Feminino , Fator Promotor de Maturação/metabolismo , Mesotelina , Camundongos , Camundongos Endogâmicos ICR , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteína Smad4/metabolismo , Fuso Acromático/metabolismo , Transativadores/metabolismo
10.
Mol Reprod Dev ; 83(2): 132-43, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26642846

RESUMO

We used etoposide (25-100 µg/mL) to induce DNA double-strand breaks (DSBs) in porcine oocytes at the germinal vesicle (GV) stage to determine how such damage affects oocyte maturation. We observed that DNA damage did not delay the rate of germinal vesicle breakdown (GVBD), but did inhibit the final stages of maturation, as indicated by the failure to extrude the first polar body. Oocytes with low levels of DSBs failed to effectively activate ataxia telangiectasia-mutated (ATM) kinase, while those with severe DNA DSBs failed to activate checkpoint kinase 1 (CHK1)--the two regulators of the DNA damage response pathway--indicating that porcine oocytes lack an efficient G2/M phase checkpoint. DSBs induced spindle defects and chromosomal misalignments, leading to the arrest of these oocytes at meiotic metaphase I. The activity of maturation-promoting factor also did not increase appropriately in oocytes with DNA DSBs, although its abundance was sufficient to promote GVBD and chromosomal condensation. Following parthenogenetic activation, embryos from etoposide-treated oocytes formed numerous micronuclei. Thus, our results indicate that DNA DSBs do not efficiently activate the ATM/CHK1-dependent DNA-damage checkpoint in porcine oocytes, allowing these DNA-impaired oocytes to enter M phase. Oocytes with DNA damage did, however, arrest at metaphase I in response to spindle defects and chromosomal misalignments, which limited the ability of these oocytes to reach meiotic metaphase II.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quebras de DNA de Cadeia Dupla , Pontos de Checagem da Fase G2 do Ciclo Celular , Pontos de Checagem da Fase M do Ciclo Celular , Oócitos/metabolismo , Proteínas Quinases/metabolismo , Fuso Acromático/metabolismo , Animais , Quinase 1 do Ponto de Checagem , Suínos
11.
Cell Biol Int ; 39(6): 710-20, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25598069

RESUMO

Ataxia-telangiectasia mutated (ATM) is critical for the DNA damage response, cell cycle checkpoints, and apoptosis. Significant effort has focused on elucidating the relationship between ATM and other nuclear signal transducers; however, little is known about the connection between ATM and oocyte meiotic maturation. We investigated the function of ATM in porcine oocytes. ATM was expressed at all stages of oocyte maturation and localized predominantly in the nucleus. Furthermore, the ATM-specific inhibitor KU-55933 blocked porcine oocyte maturation, reducing the percentages of oocytes that underwent germinal vesicle breakdown (GVBD) and first polar body extrusion. KU-55933 also decreased the expression of DNA damage-related genes (breast cancer 1, budding uninhibited by benzimidazoles 1, and P53) and reduced the mRNA and protein levels of AKT and other cell cycle-regulated genes that are predominantly expressed during G2/M phase, including bone morphogenetic protein 15, growth differentiation factor 9, cell division cycle protein 2, cyclinB1, and AKT. KU-55933 treatment decreased the developmental potential of blastocysts following parthenogenetic activation and increased the level of apoptosis. Together, these data suggested that ATM influenced the meiotic and cytoplasmic maturation of porcine oocytes, potentially by decreasing their sensitivity to DNA strand breaks, stimulating the AKT pathway, and/or altering the expression of other maternal genes.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Oócitos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Blastocisto/citologia , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Western Blotting , Forma Celular/efeitos dos fármacos , Células do Cúmulo/citologia , Células do Cúmulo/efeitos dos fármacos , Células do Cúmulo/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Morfolinas/farmacologia , Oócitos/citologia , Oócitos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pironas/farmacologia , RNA Mensageiro Estocado/genética , RNA Mensageiro Estocado/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Sus scrofa
12.
J Reprod Dev ; 60(2): 128-35, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24492657

RESUMO

ATP is critical for oocyte maturation, fertilization, and subsequent embryo development. Both mitochondrial membrane potential and copy number expand during oocyte maturation. In order to differentiate the roles of mitochondrial metabolic activity and mtDNA copy number during oocyte maturation, we used two inhibitors, FCCP (carbonyl cyanide p-(tri-fluromethoxy)phenyl-hydrazone) and ddC (2'3-dideoxycytidine), to deplete the mitochondrial membrane potential (Δφm) and mitochondrial copy number, respectively. FCCP (2000 nM) reduced ATP production by affecting mitochondrial Δφm, decreased the mRNA expression of Bmp15 (bone morphogenetic protein 15), and shortened the poly(A) tails of Bmp15, Gdf9 (growth differentiation factor 9), and Cyclin B1 transcripts. FCCP (200 and 2000 nM) also affected p34(cdc2) kinase activity. By contrast, ddC did not alter ATP production. Instead, ddC significantly decreased mtDNA copy number (P < 0.05). FCCP (200 and 2000 nM) also decreased extrusion of the first polar body, whereas ddC at all concentrations did not affect the ability of immature oocytes to reach metaphase II. Both FCCP (200 and 2000 nM) and ddC (200 and 2000 µM) reduced parthenogenetic blastocyst formation compared with untreated oocytes. However, these inhibitors did not affect total cell number and apoptosis. These findings suggest that mitochondrial metabolic activity is critical for oocyte maturation and that both mitochondrial metabolic activity and replication contribute to the developmental competence of porcine oocytes.


Assuntos
Dosagem de Genes/fisiologia , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Oócitos/citologia , Suínos/crescimento & desenvolvimento , Trifosfato de Adenosina/metabolismo , Animais , Western Blotting , Proteína Morfogenética Óssea 15/genética , Proteína Morfogenética Óssea 15/metabolismo , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Ciclina B1/genética , Ciclina B1/metabolismo , DNA Mitocondrial/genética , Desenvolvimento Embrionário , Feminino , Dosagem de Genes/genética , Fator 9 de Diferenciação de Crescimento/genética , Fator 9 de Diferenciação de Crescimento/metabolismo , Marcação In Situ das Extremidades Cortadas , Potencial da Membrana Mitocondrial/genética , Mitocôndrias/genética , Oócitos/metabolismo , RNA/química , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Suínos/genética , Suínos/metabolismo , Zalcitabina/farmacologia
13.
Heliyon ; 10(4): e26091, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38404899

RESUMO

The introduction of multidrug combination chemotherapy has significantly advanced the long-term survival prospects for osteosarcoma (OS) patients over the past decades. However, the escalating prevalence of chemoresistance has emerged as a substantial impediment to further advancements, necessitating the formulation of innovative strategies. Our present study leveraged sophisticated bulk and single-cell sequencing techniques to scrutinize the OS immune microenvironment, unveiling a potential association between the differentiation state of macrophages and the efficacy of OS chemotherapy. Notably, we observed that a heightened presence of lipid metabolism genes and pathways in predifferentiated macrophages, constituting the major cluster of OS patients exhibiting a less favorable response to chemotherapy. Subsequently, we developed a robust Macrophage and Lipid Metabolism (MLMR) risk model and a nomogram, both of which demonstrated commendable prognostic predictive performance. Furthermore, a comprehensive investigation into the underlying mechanisms of the risk model revealed intricate associations with variations in the immune response among OS patients. Finally, our meticulous drug sensitivity analysis identified a spectrum of potential therapeutic agents for OS, including AZD2014, Sapitinib, Buparlisib, Afuresertib, MIRA-1, and BIBR-1532. These findings significantly augment the therapeutic arsenal available to clinicians managing OS, presenting a promising avenue for elevating treatment outcomes.

14.
J Colloid Interface Sci ; 675: 926-934, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39002242

RESUMO

Mixed-dimensional van der Waals heterojunctions (MD-vdWhs), known for exceptional electron transfer and charge separation capabilities, remain underexplored in photocatalysis. In this study, we leveraged the synergistic effect of intermolecular π â†’ π* and D-π-A dual channels to fabricate novel MD-vdWhs. Owing to the synergistic effect, it exhibits superior electron transfer and delocalization ability, thereby enhancing its photocatalytic performance. The Optimal photocatalyst can degrade 98.78 % of 20 mg/L tetracycline (TC) within 15 min. Additionally, we introduced a novel proof strategy for investigating the photoelectron transfer path, creatively demonstrating the synergistic dual channels effect, which can be attributed to the carbonyl density and light-excitation degree. Notably, even under low-power light sources, it achieved complete inactivation of Escherichia coli within just 7 mins, far surpassing current cutting-edge research. This theoretical framework holds promise for broader applications within related studies.

15.
Environ Pollut ; 359: 124579, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032547

RESUMO

To improve the water environment quality, the development of an effective photocatalyst for pollutant removal was considered a promising strategy. The aim of the development of a novel photocatalyst PNC is pursued by modifying copper-phenylacetylide (PhC2Cu) with nitrogen-doped carbon quantum dots (N-CDs). Leading to a remarkable improvement in its light absorption capability, electron transfer efficiency and photoelectrochemical properties. Importantly, PNC possesses the characteristic of straightforward synthesis and demonstrates remarkable performance in the photodegradation of 99.87% sulfamethoxazole (SMX) within just 15 min, with a 3.95-fold increase in the photocatalytic rate. Analysis of the active substances revealed that 1O2, O2·-, and h+ are the generated active species by PNC. Active sites and degradation pathways of SMX were explored through density functional theory (DFT) calculations and intermediate analysis. Key evidence regarding the direction of electron transfer within the system was obtained through in-situ irradiated X-ray (ISI-XPS) techniques. This study deepened our understanding of the electron transfer characteristics of phenylacetylene copper and provided new insights for the modification of photocatalysts.

16.
Nat Struct Mol Biol ; 31(6): 950-963, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38243114

RESUMO

During the first lineage segregation, a mammalian totipotent embryo differentiates into the inner cell mass (ICM) and trophectoderm (TE). However, how transcription factors (TFs) regulate this earliest cell-fate decision in vivo remains elusive, with their regulomes primarily inferred from cultured cells. Here, we investigated the TF regulomes during the first lineage specification in early mouse embryos, spanning the pre-initiation, initiation, commitment, and maintenance phases. Unexpectedly, we found that TFAP2C, a trophoblast regulator, bound and activated both early TE and inner cell mass (ICM) genes at the totipotent (two- to eight-cell) stages ('bipotency activation'). Tfap2c deficiency caused downregulation of early ICM genes, including Nanog, Nr5a2, and Tdgf1, and early TE genes, including Tfeb and Itgb5, in eight-cell embryos. Transcription defects in both ICM and TE lineages were also found in blastocysts, accompanied by increased apoptosis and reduced cell numbers in ICMs. Upon trophoblast commitment, TFAP2C left early ICM genes but acquired binding to late TE genes in blastocysts, where it co-bound with CDX2, and later to extra-embryonic ectoderm (ExE) genes, where it cooperatively co-occupied with the former ICM regulator SOX2. Finally, 'bipotency activation' in totipotent embryos also applied to a pluripotency regulator NR5A2, which similarly bound and activated both ICM and TE lineage genes at the eight-cell stage. These data reveal a unique transcription circuity of totipotency underpinned by highly adaptable lineage regulators.


Assuntos
Linhagem da Célula , Regulação da Expressão Gênica no Desenvolvimento , Fator de Transcrição AP-2 , Animais , Fator de Transcrição AP-2/metabolismo , Fator de Transcrição AP-2/genética , Camundongos , Feminino , Embrião de Mamíferos/metabolismo , Trofoblastos/metabolismo , Trofoblastos/citologia , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB1/genética , Desenvolvimento Embrionário/genética , Diferenciação Celular , Receptores Citoplasmáticos e Nucleares
17.
J Colloid Interface Sci ; 671: 1-14, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38788420

RESUMO

The widespread contamination of hexavalent chromium (Cr(VI)), pharmaceuticals and personal care products (PPCPs), and dyes is a growing concern. necessitating the development of convenient and effective technologies for their removal. Copper(I) phenylacetylide (PhC2Cu) has emerged as a promising photocatalyst for environmental remediation. In this study, we introduced a functional Cu-O bond into PhC2Cu (referred to as OrPhC2Cu) by creatively converting the adsorbed oxygen on the surface of PhC2Cu into a Cu-O bond to enhance the efficiency of Cr(VI) photoreduction, PPCPs photodegradation, and dyes photodegradation through a facile vacuum activating method. The incorporation of the Cu-O bond optimized the electron structure of OrPhC2Cu, facilitating exciton dissociation and charge transfer. The exciton dissociation behavior and charge transfer mechanism were systematically investigated for the first time in the OrPhC2Cu system by photoelectrochemical tests, fluorescence and phosphorescence (PH) techniques, and density functional theory (DFT) calculations. Remarkably, the enhanced visible-light response of OrPhC2Cu improved photon utilization and significantly promoted the generation of reactive species (RSs), leading to the highly efficient Cr(VI) photoreduction (98.52% within 25 min) and sulfamethazine photodegradation (94.65% within 60 min), with 3.91 and 5.23 times higher activity compared to PhC2Cu. Additionally, the photocatalytic efficiency of OrPhC2Cu in degrading anionic dyes surpassed that of cationic dyes. The performance of the OrPhC2Cu system in treating electroplating effluent or natural water bodies suggests its potential for practical applications.

18.
Nat Cell Biol ; 26(6): 962-974, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839978

RESUMO

Dynamic epigenomic reprogramming occurs during mammalian oocyte maturation and early development. However, the underlying transcription circuitry remains poorly characterized. By mapping cis-regulatory elements using H3K27ac, we identified putative enhancers in mouse oocytes and early embryos distinct from those in adult tissues, enabling global transitions of regulatory landscapes around fertilization and implantation. Gene deserts harbour prevalent putative enhancers in fully grown oocytes linked to oocyte-specific genes and repeat activation. Embryo-specific enhancers are primed before zygotic genome activation and are restricted by oocyte-inherited H3K27me3. Putative enhancers in oocytes often manifest H3K4me3, bidirectional transcription, Pol II binding and can drive transcription in STARR-seq and a reporter assay. Finally, motif analysis of these elements identified crucial regulators of oogenesis, TCF3 and TCF12, the deficiency of which impairs activation of key oocyte genes and folliculogenesis. These data reveal distinctive regulatory landscapes and their interacting transcription factors that underpin the development of mammalian oocytes and early embryos.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Oócitos , Oogênese , Animais , Oócitos/metabolismo , Feminino , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Oogênese/genética , Camundongos , Histonas/metabolismo , Histonas/genética , Embrião de Mamíferos/metabolismo , Camundongos Endogâmicos C57BL , Desenvolvimento Embrionário/genética , Folículo Ovariano/metabolismo , Camundongos Knockout
19.
Genes Dis ; 10(4): 1714-1725, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37397527

RESUMO

Osteoarthritis (OA) is a chronic debilitating joint disease, characterized by degeneration of the cartilage and loss of the cartilage matrix, and it is clinically manifested as joint pain. Osteopontin (OPN) is a glycoprotein that is abnormally expressed in the bone and cartilage tissues and plays a vital role in various pathological processes such as the osteoarthritic inflammatory response and endochondral ossification. The focus of our study is to investigate the therapeutic potential and specific role of OPN in OA. Using morphological comparisons, we found that the cartilage was severely worn-out and there was a significant loss of the cartilage matrix in OA. OPN, CD44, and hyaluronic acid (HA) synthase 1 (HAS1) were highly expressed, and the anabolism of HA was significantly higher in the OA chondrocytes than in the control chondrocytes. Additionally, we treated the OA chondrocytes with small interfering RNA (siRNA) targeting OPN, recombinant human OPN (rhOPN), and a combination of rhOPN and anti-CD44 antibodies. Furthermore, in vivo experiments were performed in mice. We found that OPN upregulated the expression of downstream HAS1 and increased the anabolism of HA through CD44 protein expression in OA mice compared with those in control mice. Moreover, intra-articular injection of OPN in mice with OA significantly inhibited OA progression. In summary, OPN initiates an intracellular cascade via CD44 which results in an anabolic increase in HA levels, thereby inhibiting OA progression. Therefore, OPN is a promising therapeutic agent in precision treatment of OA.

20.
Front Pharmacol ; 14: 1158775, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37654606

RESUMO

Background: Osteosarcoma (OS), a primary malignant bone tumor, confronts therapeutic challenges rooted in multidrug resistance. Comprehensive understanding of disease occurrence and progression is imperative for advancing treatment strategies. m7G modification, an emerging post-transcriptional modification implicated in various diseases, may provide new insights to explore OS pathogenesis and progression. Methods: The m7G-related molecular landscape in OS was probed using diverse bioinformatics analyses, encompassing LASSO Cox regression, immune infiltration assessment, and drug sensitivity analysis. Furthermore, the therapeutic potential of AZD2014 for OS was investigated through cell apoptosis and cycle assays. Eventually, multivariate Cox analysis and experimental validations, were conducted to investigate the independent prognostic m7G-related genes. Results: A comprehensive m7G-related risk model incorporating eight signatures was established, with corresponding risk scores correlated with immune infiltration and drug sensitivity. Drug sensitivity analysis spotlighted AZD2014 as a potential therapeutic candidate for OS. Subsequent experiments corroborated AZD2014's capability to induce G1-phase cell cycle arrest and apoptosis in OS cells. Ultimately, multivariate Cox regression analysis unveiled the independent prognostic importance of CYFIP1 and EIF4A1, differential expressions of which were validated at histological and cytological levels. Conclusion: This study furnishes a profound understanding of the contribution of m7G-related genes to the pathogenesis of OS. The discerned therapeutic potential of AZD2014, in conjunction with the identification of CYFIP1 and EIF4A1 as independent risk factors, opens novel vistas for the treatment of OS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA