Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Build Environ ; 229: 109920, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36569517

RESUMO

Many respiratory diseases, including COVID-19, can be spread by aerosols expelled by infected people when they cough, talk, sing, or exhale. Exposure to these aerosols indoors can be reduced by portable air filtration units (air cleaners). Homemade or Do-It-Yourself (DIY) air filtration units are a popular alternative to commercially produced devices, but performance data is limited. Our study used a speaker-audience model to examine the efficacy of two popular types of DIY air filtration units, the Corsi-Rosenthal cube and a modified Ford air filtration unit, in reducing exposure to simulated respiratory aerosols within a mock classroom. Experiments were conducted using four breathing simulators at different locations in the room, one acting as the respiratory aerosol source and three as recipients. Optical particle spectrometers monitored simulated respiratory aerosol particles (0.3-3 µm) as they dispersed throughout the room. Using two DIY cubes (in the front and back of the room) increased the air change rate as much as 12.4 over room ventilation, depending on filter thickness and fan airflow. Using multiple linear regression, each unit increase of air change reduced exposure by 10%. Increasing the number of filters, filter thickness, and fan airflow significantly enhanced the air change rate, which resulted in exposure reductions of up to 73%. Our results show DIY air filtration units can be an effective means of reducing aerosol exposure. However, they also show performance of DIY units can vary considerably depending upon their design, construction, and positioning, and users should be mindful of these limitations.

2.
Indoor Air ; 32(2): e12987, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35225389

RESUMO

To limit community spread of SARS-CoV-2, CDC recommends universal masking indoors, maintaining 1.8 m of physical distancing, adequate ventilation, and avoiding crowded indoor spaces. Several studies have examined the independent influence of each control strategy in mitigating transmission in isolation, yet controls are often implemented concomitantly within an indoor environment. To address the influence of physical distancing, universal masking, and ventilation on very fine respiratory droplets and aerosol particle exposure, a simulator that coughed and exhaled aerosols (the source) and a second breathing simulator (the recipient) were placed in an exposure chamber. When controlling for the other two mitigation strategies, universal masking with 3-ply cotton masks reduced exposure to 0.3-3 µm coughed and exhaled aerosol particles by >77% compared to unmasked tests, whereas physical distancing (0.9 or 1.8 m) significantly changed exposure to cough but not exhaled aerosols. The effectiveness of ventilation depended upon the respiratory activity, that is, coughing or breathing, as well as the duration of exposure time. Our results demonstrate that a layered mitigation strategy approach of administrative and engineering controls can reduce personal inhalation exposure to potentially infectious very fine respiratory droplets and aerosol particles within an indoor environment.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Máscaras , Distanciamento Físico , Ventilação , Poluição do Ar em Ambientes Fechados/prevenção & controle , COVID-19/prevenção & controle , Humanos , Aerossóis e Gotículas Respiratórios , SARS-CoV-2
3.
Clin Infect Dis ; 73(7): e1790-e1794, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33506256

RESUMO

BACKGROUND: Previous research has shown that rooms of patients with coronavirus disease 2019 (COVID-19) present the potential for healthcare-associated transmission through aerosols containing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, data on the presence of these aerosols outside of patient rooms are limited. We investigated whether virus-containing aerosols were present in nursing stations and patient room hallways in a referral center with critically ill COVID-19 patients. METHODS: Eight National Institute for Occupational Safety and Health BC 251 2-stage cyclone samplers were set up throughout 6 units, including nursing stations and visitor corridors in intensive care units and general medical units, for 6 h each sampling period. Samplers were placed on tripods which held 2 samplers positioned 102 cm and 152 cm above the floor. Units were sampled for 3 days. Extracted samples underwent reverse transcription polymerase chain reaction for selected gene regions of the SARS-CoV-2 virus nucleocapsid and the housekeeping gene human RNase P as an internal control. RESULTS: The units sampled varied in the number of laboratory-confirmed COVID-19 patients present on the days of sampling. Some of the units included patient rooms under negative pressure, while most were maintained at a neutral pressure. Of 528 aerosol samples collected, none were positive for SARS-CoV-2 RNA by the estimated limit of detection of 8 viral copies/m3 of air. CONCLUSIONS: Aerosolized SARS-CoV-2 outside of patient rooms was undetectable. While healthcare personnel should avoid unmasked close contact with each other, these findings may provide reassurance for the use of alternatives to tight-fitting respirators in areas outside of patient rooms during the current pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Estado Terminal , Humanos , RNA Viral/genética , Encaminhamento e Consulta , Estados Unidos
4.
MMWR Morb Mortal Wkly Rep ; 70(7): 254-257, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33600386

RESUMO

Universal masking is one of the prevention strategies recommended by CDC to slow the spread of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) (1). As of February 1, 2021, 38 states and the District of Columbia had universal masking mandates. Mask wearing has also been mandated by executive order for federal property* as well as on domestic and international transportation conveyances.† Masks substantially reduce exhaled respiratory droplets and aerosols from infected wearers and reduce exposure of uninfected wearers to these particles. Cloth masks§ and medical procedure masks¶ fit more loosely than do respirators (e.g., N95 facepieces). The effectiveness of cloth and medical procedure masks can be improved by ensuring that they are well fitted to the contours of the face to prevent leakage of air around the masks' edges. During January 2021, CDC conducted experimental simulations using pliable elastomeric source and receiver headforms to assess the extent to which two modifications to medical procedure masks, 1) wearing a cloth mask over a medical procedure mask (double masking) and 2) knotting the ear loops of a medical procedure mask where they attach to the mask's edges and then tucking in and flattening the extra material close to the face (knotted and tucked masks), could improve the fit of these masks and reduce the receiver's exposure to an aerosol of simulated respiratory droplet particles of the size considered most important for transmitting SARS-CoV-2. The receiver's exposure was maximally reduced (>95%) when the source and receiver were fitted with modified medical procedure masks. These laboratory-based experiments highlight the importance of good fit to optimize mask performance. Until vaccine-induced population immunity is achieved, universal masking is a highly effective means to slow the spread of SARS-CoV-2** when combined with other protective measures, such as physical distancing, avoiding crowds and poorly ventilated indoor spaces, and good hand hygiene. Innovative efforts to improve the fit of cloth and medical procedure masks to enhance their performance merit attention.


Assuntos
COVID-19/prevenção & controle , Máscaras/normas , COVID-19/epidemiologia , COVID-19/transmissão , Centers for Disease Control and Prevention, U.S. , Humanos , Máscaras/estatística & dados numéricos , Estados Unidos/epidemiologia
5.
MMWR Morb Mortal Wkly Rep ; 70(27): 972-976, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34237047

RESUMO

SARS-CoV-2, the virus that causes COVID-19, can be spread by exposure to droplets and aerosols of respiratory fluids that are released by infected persons when they cough, sing, talk, or exhale. To reduce indoor transmission of SARS-CoV-2 between persons, CDC recommends measures including physical distancing, universal masking (the use of face masks in public places by everyone who is not fully vaccinated), and increased room ventilation (1). Ventilation systems can be supplemented with portable high efficiency particulate air (HEPA) cleaners* to reduce the number of infectious particles in the air and provide enhanced protection from transmission between persons (2); two recent reports found that HEPA air cleaners in classrooms could reduce overall aerosol particle concentrations by ≥80% within 30 minutes (3,4). To investigate the effectiveness of portable HEPA air cleaners and universal masking at reducing exposure to exhaled aerosol particles, the investigation team used respiratory simulators to mimic a person with COVID-19 and other, uninfected persons in a conference room. The addition of two HEPA air cleaners that met the Environmental Protection Agency (EPA)-recommended clean air delivery rate (CADR) (5) reduced overall exposure to simulated exhaled aerosol particles by up to 65% without universal masking. Without the HEPA air cleaners, universal masking reduced the combined mean aerosol concentration by 72%. The combination of the two HEPA air cleaners and universal masking reduced overall exposure by up to 90%. The HEPA air cleaners were most effective when they were close to the aerosol source. These findings suggest that portable HEPA air cleaners can reduce exposure to SARS-CoV-2 aerosols in indoor environments, with greater reductions in exposure occurring when used in combination with universal masking.


Assuntos
Ar Condicionado/instrumentação , Filtros de Ar , Poluição do Ar em Ambientes Fechados/prevenção & controle , Máscaras , SARS-CoV-2 , Aerossóis , Desenho de Equipamento , Humanos , Estados Unidos
6.
Proc Natl Acad Sci U S A ; 115(10): E2386-E2392, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463703

RESUMO

Epidemics and pandemics of influenza are characterized by rapid global spread mediated by non-mutually exclusive transmission modes. The relative significance between contact, droplet, and airborne transmission is yet to be defined, a knowledge gap for implementing evidence-based infection control measures. We devised a transmission chamber that separates virus-laden particles by size and determined the particle sizes mediating transmission of influenza among ferrets through the air. Ferret-to-ferret transmission was mediated by airborne particles larger than 1.5 µm, consistent with the quantity and size of virus-laden particles released by the donors. Onward transmission by donors was most efficient before fever onset and may continue for 5 days after inoculation. Multiple virus gene segments enhanced the transmissibility of a swine influenza virus among ferrets by increasing the release of virus-laden particles into the air. We provide direct experimental evidence of influenza transmission via droplets and fine droplet nuclei, albeit at different efficiency.


Assuntos
Ar/análise , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/transmissão , Influenza Humana/virologia , Microbiologia do Ar , Animais , Furões , Humanos , Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H1N1/genética , Masculino , Replicação Viral
7.
J Occup Environ Hyg ; 18(8): 409-422, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34161193

RESUMO

Face masks reduce the expulsion of respiratory aerosols produced during coughs and exhalations ("source control"). Factors such as the directions in which people are facing (orientation) and separation distance also affect aerosol dispersion. However, it is not clear how the combined effects of masking, orientation, and distance affect the exposure of individuals to respiratory aerosols in indoor spaces. We placed a respiratory aerosol simulator ("source") and a breathing simulator ("recipient") in a 3 m × 3 m chamber and measured aerosol concentrations for different combinations of masking, orientation, and separation distance. When the simulators were front-to-front during coughing, masks reduced the 15-min mean aerosol concentration at the recipient by 92% at 0.9 and 1.8 m separation. When the simulators were side-by-side, masks reduced the concentration by 81% at 0.9 m and 78% at 1.8 m. During breathing, masks reduced the aerosol concentration by 66% when front-to-front and 76% when side-by-side at 0.9 m. Similar results were seen at 1.8 m. When the simulators were unmasked, changing the orientations from front-to-front to side-by-side reduced the cough aerosol concentration by 59% at 0.9 m and 60% at 1.8 m. When both simulators were masked, changing the orientations did not significantly change the concentration at either distance during coughing or breathing. Increasing the distance between the simulators from 0.9 m to 1.8 m during coughing reduced the aerosol concentration by 25% when no masks were worn but had little effect when both simulators were masked. During breathing, when neither simulator was masked, increasing the separation reduced the concentration by 13%, which approached significance, while the change was not significant when both source and recipient were masked. Our results show that universal masking reduces exposure to respiratory aerosol particles regardless of the orientation and separation distance between the source and recipient.


Assuntos
Tosse , Expiração , Aerossóis , Tosse/prevenção & controle , Humanos , Máscaras , Respiração
8.
J Occup Environ Hyg ; 16(12): 804-816, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31638865

RESUMO

The protection of emergency medical service (EMS) workers from airborne disease transmission is important during routine transport of patients with infectious respiratory illnesses and would be critical during a pandemic of a disease such as influenza. However, few studies have examined the effectiveness of ambulance ventilation systems at reducing EMS worker exposure to airborne particles (aerosols). In our study, a cough aerosol simulator mimicking a coughing patient with an infectious respiratory illness was placed on a patient cot in an ambulance. The concentration and dispersion of cough aerosol particles were measured for 15 min at locations corresponding to likely positions of an EMS worker treating the patient. Experiments were performed with the patient cot at an angle of 0° (horizontal), 30°, and 60°, and with the ambulance ventilation system set to 0, 5, and 12 air changes/hour (ACH). Our results showed that increasing the air change rate significantly reduced the airborne particle concentration (p < 0.001). Increasing the air change rate from 0 to 5 ACH reduced the mean aerosol concentration by 34% (SD = 19%) overall, while increasing it from 0 to 12 ACH reduced the concentration by 68% (SD = 9%). Changing the cot angle also affected the concentration (p < 0.001), but the effect was more modest, especially at 5 and 12 ACH. Contrary to our expectations, the aerosol concentrations at the different worker positions were not significantly different (p < 0.556). Flow visualization experiments showed that the ventilation system created a recirculation pattern which helped disperse the aerosol particles throughout the compartment, reducing the effectiveness of the system. Our findings indicate that the ambulance ventilation system reduced but did not eliminate worker exposure to infectious aerosol particles. Aerosol exposures were not significantly different at different locations within the compartment, including locations behind and beside the patient. Improved ventilation system designs with smoother and more unidirectional airflows could provide better worker protection.


Assuntos
Aerossóis/análise , Ambulâncias , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Exposição Ocupacional/prevenção & controle , Ventilação/métodos , Ar Condicionado/métodos , Tosse , Serviços Médicos de Emergência , Humanos , Infecções Respiratórias/transmissão
9.
J Occup Environ Hyg ; 15(1): 1-12, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29059039

RESUMO

Ambulances are frequently contaminated with infectious microorganisms shed by patients during transport that can be transferred to subsequent patients and emergency medical service workers. Manual decontamination is tedious and time-consuming, and persistent contamination is common even after cleaning. Ultraviolet germicidal irradiation (UVGI) has been proposed as a terminal disinfection method for ambulance patient compartments. However, no published studies have tested the use of UVGI in ambulances. The objectives of this study were to investigate the efficacy of a UVGI system in an ambulance patient compartment and to examine the impact of UVGI fixture position and the UV reflectivity of interior surfaces on the time required for disinfection. A UVGI fixture was placed in the front, middle, or back of an ambulance patient compartment, and the UV irradiance was measured at 49 locations. Aluminum sheets and UV-reflective paint were added to examine the effects of increasing surface reflectivity on disinfection time. Disinfection tests were conducted using Bacillus subtilis spores as a surrogate for pathogens. Our results showed that the UV irradiance varied considerably depending upon the surface location. For example, with the UVGI fixture in the back position and without the addition of UV-reflective surfaces, the most irradiated location received a dose of UVGI sufficient for disinfection in 16 s, but the least irradiated location required 15 hr. Because the overall time required to disinfect all of the interior surfaces is determined by the time required to disinfect the surfaces receiving the lowest irradiation levels, the patient compartment disinfection times for different UVGI configurations ranged from 16.5 hr to 59 min depending upon the UVGI fixture position and the interior surface reflectivity. These results indicate that UVGI systems can reduce microbial surface contamination in ambulance compartments, but the systems must be rigorously validated before deployment. Optimizing the UVGI fixture position and increasing the UV reflectivity of the interior surfaces can substantially improve the performance of a UVGI system and reduce the time required for disinfection.


Assuntos
Ambulâncias , Bacillus subtilis/efeitos da radiação , Desinfecção/métodos , Raios Ultravioleta , Infecção Hospitalar/prevenção & controle , Desinfecção/instrumentação , Pintura , Esporos Bacterianos/efeitos da radiação
10.
J Occup Environ Hyg ; 15(9): 664-675, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30081757

RESUMO

Increased understanding of influenza transmission is critical for pandemic planning and selecting appropriate controls for healthcare personnel safety and health. The goals of this pilot study were to assess environmental contamination in different areas and at two time periods in the influenza season and to determine the feasibility of using surgical mask contamination to evaluate potential exposure to influenza virus. Bioaerosol samples were collected over 12 days (two 6-day sessions) at 12 locations within a student health center using portable two-stage bioaerosol samplers operating 8 hr each day. Surface samples were collected each morning and afternoon from common high-contact non-porous hard surfaces from rooms and locations where bioaerosol samplers were located. Surgical masks worn by participants while in contact with patients with influenza-like illness were collected. A questionnaire administered to each of the 12 participants at the end of each workday and another at the end of each workweek assessed influenza-like illness symptoms, estimated the number of influenza-like illness patient contacts, hand hygiene, and surgical mask usage. All samples were analyzed using qPCR. Over the 12 days of the study, three of the 127 (2.4%) bioaerosol samples, 2 of 483 (0.41%) surface samples, and 0 of 54 surgical masks were positive for influenza virus. For the duration of contact that occurred with an influenza patient on any of the 12 days, nurse practitioners and physicians reported contacts with influenza-like illness patients >60 min, medical assistants reported 15-44 min, and administrative staff reported <30 min. Given the limited number of bioaerosol and surface samples positive for influenza virus in the bioaerosol and surface samples, the absence of influenza virus on the surgical masks provides inconclusive evidence for the potential to use surgical masks to assess exposure to influenza viruses. Further studies are needed to determine feasibility of this approach in assessing healthcare personnel exposures. Information learned in this study can inform future field studies on influenza transmission.


Assuntos
Pessoal de Saúde , Influenza Humana/transmissão , Máscaras/virologia , Aerossóis , Humanos , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Maryland/epidemiologia , Exposição Ocupacional , Orthomyxoviridae/genética , Orthomyxoviridae/isolamento & purificação , Projetos Piloto , RNA Viral , Reação em Cadeia da Polimerase em Tempo Real , Estudantes , Inquéritos e Questionários , Local de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA