Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 56(32): 4145-4153, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28707474

RESUMO

A significant fraction of the eukaryotic proteome consists of proteins that are either partially or completely disordered under native-like conditions. Intrinsically disordered proteins (IDPs) are common in protein-protein interactions and are involved in numerous cellular processes. Although many proteins have been identified as disordered, much less is known about the binding mechanisms of the coupled binding and folding reactions involving IDPs. Here we have analyzed the rate-limiting transition state for binding between the TAZ1 domain of CREB binding protein and the intrinsically disordered transactivation domain of STAT2 (TAD-STAT2) by site-directed mutagenesis and kinetic experiments (Φ-value analysis) and found that the native protein-protein binding interface is not formed at the transition state for binding. Instead, native hydrophobic binding interactions form late, after the rate-limiting barrier has been crossed. The association rate constant in the absence of electrostatic enhancement was determined to be rather high. This is consistent with the Φ-value analysis, which showed that there are few or no obligatory native contacts. Also, linear free energy relationships clearly demonstrate that native interactions are cooperatively formed, a scenario that has usually been observed for proteins that fold according to the so-called nucleation-condensation mechanism. Thus, native hydrophobic binding interactions at the rate-limiting transition state for association between TAD-STAT2 and TAZ1 are not a requirement, which is generally in agreement with previous findings on other IDP systems and might be a common mechanism for IDPs.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Modelos Químicos , Fragmentos de Peptídeos/química , Fator de Transcrição STAT2/química , Sialoglicoproteínas/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Sialoglicoproteínas/genética , Sialoglicoproteínas/metabolismo
2.
ACS Chem Biol ; 13(5): 1218-1227, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29614221

RESUMO

Intrinsically disordered proteins (IDPs) are abundant in the eukaryotic proteome. However, little is known about the role of subnanosecond dynamics and the conformational entropy that it represents in protein-protein interactions involving IDPs. Using nuclear magnetic resonance side chain and backbone relaxation, stopped-flow kinetics, isothermal titration calorimetry, and computational studies, we have characterized the interaction between the globular TAZ1 domain of the CREB binding protein and the intrinsically disordered transactivation domain of STAT2 (TAD-STAT2). We show that the TAZ1/TAD-STAT2 complex retains considerable subnanosecond motions, with TAD-STAT2 undergoing only a partial disorder-to-order transition. We report here the first experimental determination of the conformational entropy change for both binding partners in an IDP binding interaction and find that the total change even exceeds in magnitude the binding enthalpy and is comparable to the contribution from the hydrophobic effect, demonstrating its importance in the binding energetics. Furthermore, we show that the conformational entropy change for TAZ1 is also instrumental in maintaining a biologically meaningful binding affinity. Strikingly, a spatial clustering of very high amplitude motions and a cluster of more rigid sites in the complex exist, which through computational studies we found to overlap with regions that experience energetic frustration and are less frustrated, respectively. Thus, the residual dynamics in the bound state could be necessary for faster dissociation, which is important for proteins that interact with multiple binding partners.


Assuntos
Proteína de Ligação a CREB/química , Proteínas Intrinsicamente Desordenadas/química , Domínios e Motivos de Interação entre Proteínas , Fator de Transcrição STAT2/química , Calorimetria , Entropia , Interações Hidrofóbicas e Hidrofílicas , Cinética , Ligação Proteica , Mapeamento de Interação de Proteínas
3.
Sci Rep ; 8(1): 7872, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29777197

RESUMO

Intrinsically disordered proteins (IDPs) are common in eukaryotes. However, relatively few experimental studies have addressed the nature of the rate-limiting transition state for the coupled binding and folding reactions involving IDPs. By using site-directed mutagenesis in combination with kinetics measurements we have here characterized the transition state for binding between the globular TAZ1 domain of CREB binding protein and the intrinsically disordered C-terminal activation domain of Hif-1α (Hif-1α CAD). A total of 17 Hif-1α CAD point-mutations were generated and a Φ-value binding analysis was carried out. We found that native hydrophobic binding interactions are not formed at the transition state. We also investigated the effect the biologically important Hif-1α CAD Asn-803 hydroxylation has on the binding kinetics, and found that the whole destabilization effect due the hydroxylation is within the dissociation rate constant. Thus, the rate-limiting transition state is "disordered-like", with native hydrophobic binding contacts being formed cooperatively after the rate-limiting barrier, which is clearly shown by linear free energy relationships. The same behavior was observed in a previously characterized TAZ1/IDP interaction, which may suggest common features for the rate-limiting transition state for TAZ1/IDP interactions.


Assuntos
Proteína de Ligação a CREB/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Sítios de Ligação , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Hidroxilação , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Cinética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios Proteicos , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
4.
Nat Commun ; 9(1): 4300, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30327463

RESUMO

Chromatin structure and function is regulated by reader proteins recognizing histone modifications and/or histone variants. We recently identified that PWWP2A tightly binds to H2A.Z-containing nucleosomes and is involved in mitotic progression and cranial-facial development. Here, using in vitro assays, we show that distinct domains of PWWP2A mediate binding to free linker DNA as well as H3K36me3 nucleosomes. In vivo, PWWP2A strongly recognizes H2A.Z-containing regulatory regions and weakly binds H3K36me3-containing gene bodies. Further, PWWP2A binds to an MTA1-specific subcomplex of the NuRD complex (M1HR), which consists solely of MTA1, HDAC1, and RBBP4/7, and excludes CHD, GATAD2 and MBD proteins. Depletion of PWWP2A leads to an increase of acetylation levels on H3K27 as well as H2A.Z, presumably by impaired chromatin recruitment of M1HR. Thus, this study identifies PWWP2A as a complex chromatin-binding protein that serves to direct the deacetylase complex M1HR to H2A.Z-containing chromatin, thereby promoting changes in histone acetylation levels.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Histona Desacetilases/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Proteínas Repressoras/metabolismo , Acetilação , Animais , Proteínas Cromossômicas não Histona/genética , Células HEK293 , Histona Desacetilases/genética , Histonas/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Camundongos , Nucleossomos/metabolismo , RNA Interferente Pequeno , Proteínas Repressoras/genética , Transativadores
5.
Infect Dis (Lond) ; 47(8): 555-62, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25851241

RESUMO

BACKGROUND: The future treatment of hepatitis C virus (HCV) infection will be combinations of direct-acting antivirals (DAAs) that not only target multiple viral targets, but are also effective against different HCV genotypes. Of the many drug targets in HCV, one promising target is the non-structural 5A protein (NS5A), against which inhibitors, namely daclatasvir, ledipasvir and ombitasvir, have shown potent efficacy. However, since HCV is known to have very high sequence diversity, development of resistance is a problem against but not limited to NS5A inhibitors (i.e. resistance also found against NS3-protease and NS5B non-nucleoside inhibitors), when used in suboptimal combinations. Furthermore, it has been shown that natural resistance against DAAs is present in treatment-naïve patients and such baseline resistance will potentially complicate future treatment strategies. METHODS: A pan-genotypic population-sequencing method with degenerated primers targeting the NS5A region was developed. We have investigated the prevalence of baseline resistant variants in 127 treatment-naïve patients of HCV genotypes 1a, 1b, 2b and 3a. RESULTS: The method could successfully sequence more than 95% of genotype 1a, 1b and 3a samples. Interpretation of fold resistance data against the NS5A inhibitors was done with the help of earlier published phenotypic data. Baseline resistance variants associated with high resistance (1000-50,000-fold) was found in three patients: Q30H or Y93N in genotype 1a patients and further Y93H in a genotype 3a patient. CONCLUSION: Using this method, baseline resistance can be examined and the data could have a potential role in selecting the optimal and cost-efficient treatment for the patient.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Hepatite C Crônica/virologia , Hepatite C/virologia , Polimorfismo Genético , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética , Antivirais/uso terapêutico , Carbamatos , Farmacorresistência Viral/genética , Genótipo , Imidazóis/uso terapêutico , Mutação de Sentido Incorreto , Filogenia , Reação em Cadeia da Polimerase/métodos , Prevalência , Inibidores de Proteases/uso terapêutico , Pirrolidinas , Análise de Sequência , Suécia/epidemiologia , Valina/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA