Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(17): e2113675119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35439054

RESUMO

We report on a heterozygous KCNA2 variant in a child with epilepsy. KCNA2 encodes KV1.2 subunits, which form homotetrameric potassium channels and participate in heterotetrameric channel complexes with other KV1-family subunits, regulating neuronal excitability. The mutation causes substitution F233S at the KV1.2 charge transfer center of the voltage-sensing domain. Immunocytochemical trafficking assays showed that KV1.2(F233S) subunits are trafficking deficient and reduce the surface expression of wild-type KV1.2 and KV1.4: a dominant-negative phenotype extending beyond KCNA2, likely profoundly perturbing electrical signaling. Yet some KV1.2(F233S) trafficking was rescued by wild-type KV1.2 and KV1.4 subunits, likely in permissible heterotetrameric stoichiometries: electrophysiological studies utilizing applied transcriptomics and concatemer constructs support that up to one or two KV1.2(F233S) subunits can participate in trafficking-capable heterotetramers with wild-type KV1.2 or KV1.4, respectively, and that both early and late events along the biosynthesis and secretion pathway impair trafficking. These studies suggested that F233S causes a depolarizing shift of ∼48 mV on KV1.2 voltage dependence. Optical tracking of the KV1.2(F233S) voltage-sensing domain (rescued by wild-type KV1.2 or KV1.4) revealed that it operates with modestly perturbed voltage dependence and retains pore coupling, evidenced by off-charge immobilization. The equivalent mutation in the Shaker K+ channel (F290S) was reported to modestly affect trafficking and strongly affect function: an ∼80-mV depolarizing shift, disrupted voltage sensor activation and pore coupling. Our work exposes the multigenic, molecular etiology of a variant associated with epilepsy and reveals that charge-transfer-center disruption has different effects in KV1.2 and Shaker, the archetypes for potassium channel structure and function.


Assuntos
Epilepsia , Membrana Celular/metabolismo , Criança , Epilepsia/genética , Epilepsia/metabolismo , Humanos , Canal de Potássio Kv1.1/genética , Canal de Potássio Kv1.2/genética , Canal de Potássio Kv1.2/metabolismo , Mutação , Potássio/metabolismo , Canais de Potássio/metabolismo
2.
J Physiol ; 601(23): 5367-5389, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37883018

RESUMO

Two KCNA2 variants (p.H310Y and p.H310R) were discovered in paediatric patients with epilepsy and developmental delay. KCNA2 encodes KV 1.2-channel subunits, which regulate neuronal excitability. Both gain and loss of KV 1.2 function cause epilepsy, precluding the prediction of variant effects; and while H310 is conserved throughout the KV -channel superfamily, it is largely understudied. We investigated both variants in heterologously expressed, human KV 1.2 channels by immunocytochemistry, electrophysiology and voltage-clamp fluorometry. Despite affecting the same channel, at the same position, and being associated with severe neurological disease, the two variants had diametrically opposite effects on KV 1.2 functional expression. The p.H310Y variant produced 'dual gain of function', increasing both cell-surface trafficking and activity, delaying channel closure. We found that the latter is due to the formation of a hydrogen bond that stabilizes the active state of the voltage-sensor domain. Additionally, H310Y abolished 'ball and chain' inactivation of KV 1.2 by KV ß1 subunits, enhancing gain of function. In contrast, p.H310R caused 'dual loss of function', diminishing surface levels by multiple impediments to trafficking and inhibiting voltage-dependent channel opening. We discuss the implications for KV -channel biogenesis and function, an emergent hotspot for disease-associated variants, and mechanisms of epileptogenesis. KEY POINTS: KCNA2 encodes the subunits of KV 1.2 voltage-activated, K+ -selective ion channels, which regulate electrical signalling in neurons. We characterize two KCNA2 variants from patients with developmental delay and epilepsy. Both variants affect position H310, highly conserved in KV channels. The p.H310Y variant caused 'dual gain of function', increasing both KV 1.2-channel activity and the number of KV 1.2 subunits on the cell surface. H310Y abolished 'ball and chain' (N-type) inactivation of KV 1.2 by KV ß1 subunits, enhancing the gain-of-function phenotype. The p.H310R variant caused 'dual loss of function', diminishing the presence of KV 1.2 subunits on the cell surface and inhibiting voltage-dependent channel opening. As H310Y stabilizes the voltage-sensor active conformation and abolishes N-type inactivation, it can serve as an investigative tool for functional and pharmacological studies.


Assuntos
Epilepsia , Humanos , Criança , Epilepsia/genética , Neurônios/fisiologia , Transdução de Sinais , Membrana Celular , Fenótipo , Canal de Potássio Kv1.2/genética
3.
Cereb Cortex ; 30(3): 1813-1829, 2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-31711131

RESUMO

The most common excitatory neurotransmitter in the central nervous system, glutamate, is loaded into synaptic vesicles by vesicular glutamate transporters (VGluTs). The primary isoforms, VGluT1 and 2, are expressed in complementary patterns throughout the brain and correlate with short-term synaptic plasticity. VGluT1 deficiency is observed in certain neurological disorders, and hemizygous (VGluT1+/-) mice display increased anxiety and depression, altered sensorimotor gating, and impairments in learning and memory. The synaptic mechanisms underlying these behavioral deficits are unknown. Here, we show that VGluT1+/- mice had decreased visual processing speeds during a sustained visual-spatial attention task. Furthermore, in vitro recordings of corticothalamic (CT) synapses revealed dramatic reductions in short-term facilitation, increased initial release probability, and earlier synaptic depression in VGluT1+/- mice. Our electron microscopy results show that VGluT1 concentration is reduced at CT synapses of hemizygous mice, but other features (such as vesicle number and active zone size) are unchanged. We conclude that VGluT1-haploinsuficiency decreases the dynamic range of gain modulation provided by CT feedback to the thalamus, and this deficiency contributes to the observed attentional processing deficit. We further hypothesize that VGluT1 concentration regulates release probability by applying a "brake" to an unidentified presynaptic protein that typically acts as a positive regulator of release.


Assuntos
Atenção/fisiologia , Terminações Pré-Sinápticas/fisiologia , Sinapses/fisiologia , Vesículas Sinápticas/fisiologia , Proteína Vesicular 1 de Transporte de Glutamato/deficiência , Visão Ocular , Animais , Ansiedade/fisiopatologia , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Camundongos , Neurotransmissores/metabolismo , Filtro Sensorial/fisiologia
4.
J Physiol ; 598(22): 5245-5269, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32833227

RESUMO

KEY POINTS: KV1.2 channels, encoded by the KCNA2 gene, regulate neuronal excitability by conducting K+ upon depolarization. A new KCNA2 missense variant was discovered in a patient with epilepsy, causing amino acid substitution F302L at helix S4, in the KV1.2 voltage-sensing domain. Immunocytochemistry and flow cytometry showed that F302L does not impair KCNA2 subunit surface trafficking. Molecular dynamics simulations indicated that F302L alters the exposure of S4 residues to membrane lipids. Voltage clamp fluorometry revealed that the voltage-sensing domain of KV1.2-F302L channels is more sensitive to depolarization. Accordingly, KV1.2-F302L channels opened faster and at more negative potentials; however, they also exhibited enhanced inactivation: that is, F302L causes both gain- and loss-of-function effects. Coexpression of KCNA2-WT and -F302L did not fully rescue these effects. The proband's symptoms are more characteristic of patients with loss of KCNA2 function. Enhanced KV1.2 inactivation could lead to increased synaptic release in excitatory neurons, steering neuronal circuits towards epilepsy. ABSTRACT: An exome-based diagnostic panel in an infant with epilepsy revealed a previously unreported de novo missense variant in KCNA2, which encodes voltage-gated K+ channel KV1.2. This variant causes substitution F302L, in helix S4 of the KV1.2 voltage-sensing domain (VSD). F302L does not affect KCNA2 subunit membrane trafficking. However, it does alter channel functional properties, accelerating channel opening at more hyperpolarized membrane potentials, indicating gain of function. F302L also caused loss of KV1.2 function via accelerated inactivation onset, decelerated recovery and shifted inactivation voltage dependence to more negative potentials. These effects, which are not fully rescued by coexpression of wild-type and mutant KCNA2 subunits, probably result from the enhancement of VSD function, as demonstrated by optically tracking VSD depolarization-evoked conformational rearrangements. In turn, molecular dynamics simulations suggest altered VSD exposure to membrane lipids. Compared to other encephalopathy patients with KCNA2 mutations, the proband exhibits mild neurological impairment, more characteristic of patients with KCNA2 loss of function. Based on this information, we propose a mechanism of epileptogenesis based on enhanced KV1.2 inactivation leading to increased synaptic release preferentially in excitatory neurons, and hence the perturbation of the excitatory/inhibitory balance of neuronal circuits.


Assuntos
Encefalopatias , Epilepsia , Substituição de Aminoácidos , Epilepsia/genética , Humanos , Potenciais da Membrana , Mutação
5.
J Nutr ; 148(3): 480-489, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29546295

RESUMO

Background: Low protein amounts are used in ketogenic diets (KDs), where an essential (indispensable) amino acid (IAA) can become limiting. Because the chemically sensitive, seizurogenic, anterior piriform cortex (APC) is excited by IAA limitation, an imbalanced KD could exacerbate seizure activity. Objective: We questioned whether dietary IAA depletion worsens seizure activity in rodents fed KDs. Methods: In a series of 6 trials, male rats or gerbils of both sexes (6-8/group) were given either control diets (CDs) appropriate for each trial, a KD, or a threonine-devoid (ThrDev) diet for ≥7 d, and tested for seizures using various stimuli. Microchip analysis of rat APCs was also used to determine if changes in transcripts for structures relevant to seizurogenesis are affected by a ThrDev diet. Glutamate release was measured in microdialysis samples from APCs during the first meal after 7 d on a CD or a ThrDev diet. Results: Adult rats showed increased susceptibility to seizures in both chemical (58%) and electroshock (doubled) testing after 7 d on a ThrDev diet compared with CD (each trial, P ≤ 0.05). Seizure-prone Mongolian gerbils had fewer seizures after receiving a KD, but exacerbated seizures (68%) after 1 meal of KD minus Thr (KD-T compared with CD, P < 0.05). In kindled rats fed KD-T, both counts (19%) and severities (77%) of seizures were significantly elevated (KD-T compared with CD, P < 0.05). Gene transcript changes were consistent with enhanced seizure susceptibility (7-21 net-fold increases, P = 0.045-0.001) and glutamate release into the APC was increased acutely (4-fold at 20 min, 2.6-fold at 60 min, P < 0.05) after 7 d on a ThrDev diet. Conclusion: Seizure severity in rats and gerbils was reduced after KDs and exacerbated by ThrDev, both in KD- and CD-fed animals, consistent with the mechanistic studies. We suggest that a complete protein profile in KDs may improve IAA balance in the APC, thereby lowering the risk of seizures.


Assuntos
Aminoácidos Essenciais/deficiência , Encéfalo/metabolismo , Dieta Cetogênica , Proteínas Alimentares , Epilepsia/dietoterapia , Convulsões/etiologia , Animais , Deficiências Nutricionais/etiologia , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/química , Epilepsia/complicações , Epilepsia/metabolismo , Comportamento Alimentar , Feminino , Gerbillinae , Ácido Glutâmico/metabolismo , Masculino , Necessidades Nutricionais , Ratos Sprague-Dawley , Convulsões/metabolismo , Treonina/deficiência
6.
J Physiol ; 592(7): 1457-77, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24396054

RESUMO

Postsynaptic kainate receptors mediate excitatory synaptic transmission over a broad range of temporal frequencies. In heterologous systems, the temporal responses of kainate receptors vary when different channel-forming and auxiliary subunits are co-expressed but how this variability relates to the temporal differences at central synapses is incompletely understood. The mammalian cone photoreceptor synapse provides advantages for comparing the different temporal signalling roles of kainate receptors, as cones release glutamate over a range of temporal frequencies, and three functionally distinct Off bipolar cell types receive cone signals at synapses that contain either AMPA or kainate receptors, all with different temporal properties. A disadvantage is that the different receptor subunits are not identified. We used in situ hybridization, immunocytochemistry, and pharmacology to identify the kainate receptor and auxiliary subunits in ground squirrel (Ictidomys tridecimlineatus) cb1a/b, cb2, and cb3a/b Off bipolar cell types. As expected, the types showed distinct subunit expression patterns. Kainate receptors mediated ∼80% of the synaptic response in cb3a/b cells and were heteromers of GluK1 and GluK5. Cb3a/b cells contained message for GluK1 and GluK5, and also GluK3 and the auxiliary subunit Neto1. The synaptic responses in cb1a/b cells were mediated by GluK1-containing kainate receptors that behaved differently from the receptors expressed by cb3a/b cells. AMPA receptors mediated the entire synaptic response in cb2 cells and the remaining synaptic response in cb3a/b cells. We conclude that GluK1 is the predominant kainate receptor subunit in cb1 and cb3 Off bipolar cells. Different temporal response properties may result from selective association with GluK3, GluK5, or Neto1.


Assuntos
Receptores de Ácido Caínico/metabolismo , Células Bipolares da Retina/metabolismo , Transmissão Sináptica , Animais , Potenciais Pós-Sinápticos Excitadores , Ácido Glutâmico/metabolismo , Subunidades Proteicas , Receptores de Ácido Caínico/efeitos dos fármacos , Receptores de Ácido Caínico/genética , Células Bipolares da Retina/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/metabolismo , Sciuridae , Fatores de Tempo , Receptor de GluK3 Cainato
7.
Vis Neurosci ; 28(4): 337-50, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21524338

RESUMO

As Cajal discovered in the late 19th century, the bird retina receives a substantial input from the brain. Approximately 10,000 fibers originating in a small midbrain nucleus, the isthmo-optic nucleus (ION), terminate in each retina. The input to the ION is chiefly from the optic tectum which, in the bird, is the primary recipient of retinal input. These neural elements constitute a closed loop, the centrifugal visual system (CVS), beginning and ending in the retina, that delivers positive feedback to active ganglion cells. Several features of the system are puzzling. All fibers from the ION terminate in the ventral retina and an unusual axon-bearing amacrine cell, the target cell, is the postsynaptic partner of these fibers. While the rest of the CVS is orderly and retinotopic, target cell axons project seemingly at random, mostly to distant parts of the retina. We review here the most significant features of the anatomy and physiology of the CVS with a view to understanding its function. We suggest that many of the facts about this system, including some that are otherwise difficult to explain, can be accommodated within the hypothesis that the images of shadows cast on the ground or on objects in the environment, initiate a rapid and parallel search of the sky for a possible aerial predator. If a predator is located, shadow and predator would be temporarily linked together and tracked by the CVS.


Assuntos
Aves/fisiologia , Encéfalo/fisiologia , Fenômenos Fisiológicos Oculares , Retina/fisiologia , Vias Visuais/fisiologia , Animais , Vias Eferentes/fisiologia , Retroalimentação Fisiológica/fisiologia , Mesencéfalo/fisiologia , Fibras Nervosas/fisiologia , Colículos Superiores/fisiologia
8.
Vis Neurosci ; 27(3-4): 103-18, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20650017

RESUMO

The bird visual system includes a substantial projection, of unknown function, from a midbrain nucleus to the contralateral retina. Every centrifugal, or efferent, neuron originating in the midbrain nucleus makes synaptic contact with the soma of a single unique amacrine cell, the target cell (TC). By labeling efferent neurons in the midbrain, we have been able to identify their terminals in retinal slices and make patch-clamp recordings from TCs. TCs generate Na+-based action potentials (APs) triggered by spontaneous EPSPs originating from multiple classes of presynaptic neurons. Exogenously applied glutamate elicited inward currents having the mixed pharmacology of NMDA, kainate, and inward rectifying AMPA receptors. Exogenously applied GABA elicited currents entirely suppressed by GABAzine and therefore mediated by GABAA receptors. Immunohistochemistry showed the vesicular glutamate transporter, vGluT2, to be present in the characteristic synaptic boutons of efferent terminals, whereas the GABA synthetic enzyme, GAD, was present in much smaller processes of intrinsic retinal neurons. Extracellular recording showed that exogenously applied GABA was directly excitatory to TCs and, consistent with this, NKCC, the Cl- transporter often associated with excitatory GABAergic synapses, was identified in TCs by antibody staining. The presence of excitatory retinal input to TCs implies that TCs are not merely slaves to their midbrain input; instead, their output reflects local retinal activity and descending input from the midbrain.


Assuntos
Células Amácrinas/fisiologia , Galinhas/anatomia & histologia , Neurônios/fisiologia , Retina/citologia , Potenciais de Ação , Células Amácrinas/efeitos dos fármacos , Animais , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , GABAérgicos/farmacologia , Glutamato Descarboxilase/metabolismo , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Técnicas In Vitro , Isoquinolinas/metabolismo , Ácido Caínico/farmacologia , Mesencéfalo/citologia , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Agonistas Nicotínicos/farmacologia , Parvalbuminas/metabolismo , Técnicas de Patch-Clamp/métodos , Receptores de Neurotransmissores/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 2 da Família 12 de Carreador de Soluto , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Vias Visuais/efeitos dos fármacos , Vias Visuais/fisiologia , Ácido gama-Aminobutírico/farmacologia
9.
Vis Neurosci ; 26(2): 249-54, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19296862

RESUMO

The retinas of birds receive a substantial efferent, or centrifugal, input from a midbrain nucleus. The function of this input is presently unclear, but previous work in the pigeon has shown that efferent input is excluded from the area centralis, suggesting that the functions of the area centralis and the efferent system are incompatible. Using an antibody specific to rods, we have identified the area centralis in another species, the chicken, and mapped the distribution of the unique amacrine cells that are the postsynaptic partners of efferent fibers. Efferent target amacrine cells are found within the chicken area centralis and their density is continuous across the border of the area centralis. In contrast to the pigeon retina then, we conclude that the chicken area centralis receives efferent input. We suggest that the difference between the two species is attributable to the presence of a fovea within the area centralis of the pigeon and its absence from that of the chicken.


Assuntos
Células Amácrinas/citologia , Fóvea Central/citologia , Neurônios Eferentes/citologia , Animais , Contagem de Células , Galinhas , Columbidae , Fóvea Central/metabolismo , Imuno-Histoquímica , Rodopsina/biossíntese , Especificidade da Espécie , Acuidade Visual , Vias Visuais
10.
Front Mol Neurosci ; 11: 139, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740282

RESUMO

The neurotransmitter acetylcholine has been implicated in reward learning and drug addiction. However, the roles of the various cholinergic receptor subtypes on different neuron populations remain elusive. Here we study the function of muscarinic M4 receptors (M4Rs) in dopamine D1 receptor (D1R) expressing neurons and cholinergic neurons (expressing choline acetyltransferase; ChAT), during various reward-enforced behaviors and in a "waiting"-impulsivity test. We applied cell-type-specific gene deletions targeting M4Rs in D1RCre or ChATCre mice. Mice lacking M4Rs in D1R-neurons displayed greater cocaine seeking and drug-primed reinstatement than their littermate controls in a Pavlovian conditioned place preference (CPP) paradigm. Furthermore, the M4R-D1RCre mice initiated significantly more premature responses (PRs) in the 5-choice-serial-reaction-time-task (5CSRTT) than their littermate controls, indicating impaired waiting impulse control. In contrast, mice lacking M4Rs in cholinergic neurons did not acquire cocaine Pavlovian conditioning. The M4R-ChATCre mice were also unable to learn positive reinforcement to either natural reward or cocaine in an operant runway paradigm. Immediate early gene (IEG) expression (cFos and FosB) induced by repeated cocaine injections was significantly increased in the forebrain of M4R-D1RCre mice, whereas it remained normal in the M4R-ChATCre mice. Our study illustrates that muscarinic M4Rs on specific neural populations, either cholinergic or D1R-expressing, are pivotal for learning processes related to both natural reward and drugs of abuse, with opposing functionality. Furthermore, we found that neurons expressing both M4Rs and D1Rs are important for signaling impulse control.

11.
Front Pharmacol ; 8: 714, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29066971

RESUMO

Drug addiction is a chronic, debilitating disease that affects millions of people around the world causing a substantial societal burden. Despite decades of research efforts, treatment possibilities remain limited and relapse represents the most treatment-resistant element. Neurosteroid sigma-1 receptors have been meticulously studied in psychostimulant reinforced Pavlovian learning, while the sigma-2 receptor subtype has remained unexplored. Recent development of selective sigma-2 receptor ligands have now made it possible to investigate if the sigma-2 receptor system is a potential target to treat drug addiction. We examined the effect of the sigma-2 receptor agonist Siramesine (Lu 28-179) on cocaine-associated locomotion, Pavlovian learning, and reward neurocircuitry using electrophysiology recordings and in vivo microdialysis. We found that Siramesine significantly attenuated conditioned place preference acquisition and expression, as well as it completely blocked cocaine-primed reinstatement. Siramesine, in a similar manner as the selective sigma-1 receptor antagonist BD 1063, decreased acute locomotor responses to cocaine. Immunohistochemistry suggests co-expression of progesterone receptor membrane component 1/sigma-2 receptors and vesicular glutamate transporter 1 in presynaptic boutons of the nucleus accumbens (NAc). Whole-cell voltage clamp recordings of neurons in the NAc indicated that Siramesine decreases the presynaptic release probability of glutamate. Further, we demonstrated, via in vivo microdialysis, that Siramesine significantly decreased cocaine-evoked dopamine release in the striatum of freely moving mice. Collectively, these findings demonstrate that sigma-2 receptors regulate neurocircuitry responsible for positive reinforcement and thereby play a role in cocaine-reinforced Pavlovian behaviors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA