Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1388998, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863705

RESUMO

Background: Neuronal nicotinic acetylcholine receptors (nAChRs) are abundant in the central nervous system (CNS), playing critical roles in brain function. Antigenicity of nAChRs has been well demonstrated with antibodies to ganglionic AChR subtypes (i.e., subunit α3 of α3ß4-nAChR) and muscle AChR autoantibodies, thus making nAChRs candidate autoantigens in autoimmune CNS disorders. Antibodies to several membrane receptors, like NMDAR, have been identified in autoimmune encephalitis syndromes (AES), but many AES patients have yet to be unidentified for autoantibodies. This study aimed to develop of a cell-based assay (CBA) that selectively detects potentially pathogenic antibodies to subunits of the major nAChR subtypes (α4ß2- and α7-nAChRs) and its use for the identification of such antibodies in "orphan" AES cases. Methods: The study involved screening of sera derived from 1752 patients from Greece, Turkey and Italy, who requested testing for AES-associated antibodies, and from 1203 "control" patients with other neuropsychiatric diseases, from the same countries or from Germany. A sensitive live-CBA with α4ß2-or α7-nAChR-transfected cells was developed to detect antibodies against extracellular domains of nAChR major subunits. Flow cytometry (FACS) was performed to confirm the CBA findings and indirect immunohistochemistry (IHC) to investigate serum autoantibodies' binding to rat brain tissue. Results: Three patients were found to be positive for serum antibodies against nAChR α4 subunit by CBA and the presence of the specific antibodies was quantitatively confirmed by FACS. We detected specific binding of patient-derived serum anti-nAChR α4 subunit antibodies to rat cerebellum and hippocampus tissue. No serum antibodies bound to the α7-nAChR-transfected or control-transfected cells, and no control serum antibodies bound to the transfected cells. All patients positive for serum anti-nAChRs α4 subunit antibodies were negative for other AES-associated antibodies. All three of the anti-nAChR α4 subunit serum antibody-positive patients fall into the AES spectrum, with one having Rasmussen encephalitis, another autoimmune meningoencephalomyelitis and another being diagnosed with possible autoimmune encephalitis. Conclusion: This study lends credence to the hypothesis that the major nAChR subunits are autoimmune targets in some cases of AES and establishes a sensitive live-CBA for the identification of such patients.


Assuntos
Autoanticorpos , Receptores Nicotínicos , Humanos , Autoanticorpos/imunologia , Autoanticorpos/sangue , Receptores Nicotínicos/imunologia , Animais , Masculino , Feminino , Ratos , Adulto , Pessoa de Meia-Idade , Doenças do Sistema Nervoso Central/imunologia , Idoso , Adulto Jovem , Encefalite/imunologia , Adolescente , Neurônios/imunologia , Neurônios/metabolismo
2.
PLoS One ; 9(7): e103244, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25068303

RESUMO

Human (α6ß2)(α4ß2)ß3 nicotinic acetylcholine receptors (AChRs) are essential for addiction to nicotine and a target for drug development for smoking cessation. Expressing this complex AChR is difficult, but has been achieved using subunit concatamers. In order to determine what limits expression of α6* AChRs and to efficiently express α6* AChRs using free subunits, we investigated expression of the simpler (α6ß2)2ß3 AChR. The concatameric form of this AChR assembles well, but is transported to the cell surface inefficiently. Various chimeras of α6 with the closely related α3 subunit increased expression efficiency with free subunits and produced pharmacologically equivalent functional AChRs. A chimera in which the large cytoplasmic domain of α6 was replaced with that of α3 increased assembly with ß2 subunits and transport of AChRs to the oocyte surface. Another chimera replacing the unique methionine 211 of α6 with leucine found at this position in transmembrane domain 1 of α3 and other α subunits increased assembly of mature subunits containing ß3 subunits within oocytes. Combining both α3 sequences in an α6 chimera increased expression of functional (α6ß2)2ß3 AChRs to 12-fold more than with concatamers. This is pragmatically useful, and provides insights on features of α6 subunit structure that limit its expression in transfected cells.


Assuntos
Oócitos/fisiologia , Receptores Nicotínicos/fisiologia , Acetilcolina/farmacologia , Alcaloides/farmacologia , Animais , Atropina/farmacologia , Azocinas/farmacologia , Agonistas Colinérgicos/farmacologia , Feminino , Expressão Gênica , Humanos , Potenciais da Membrana/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Oócitos/metabolismo , Técnicas de Patch-Clamp , Quinolizinas/farmacologia , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Vareniclina/farmacologia , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA