Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Commun ; 13(1): 3640, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752615

RESUMO

Systematic SARS-CoV-2 testing is a valuable tool for infection control and surveillance. However, broad application of high sensitive RT-qPCR testing in children is often hampered due to unpleasant sample collection, limited RT-qPCR capacities and high costs. Here, we developed a high-throughput approach ('Lolli-Method') for SARS-CoV-2 detection in children, combining non-invasive sample collection with an RT-qPCR-pool testing strategy. SARS-CoV-2 infections were diagnosed with sensitivities of 100% and 93.9% when viral loads were >106 copies/ml and >103 copies/ml in corresponding Naso-/Oropharyngeal-swabs, respectively. For effective application of the Lolli-Method in schools and daycare facilities, SEIR-modeling indicated a preferred frequency of two tests per week. The developed test strategy was implemented in 3,700 schools and 698 daycare facilities in Germany, screening over 800,000 individuals twice per week. In a period of 3 months, 6,364 pool-RT-qPCRs tested positive (0.64%), ranging from 0.05% to 2.61% per week. Notably, infections correlated with local SARS-CoV-2 incidences and with a school social deprivation index. Moreover, in comparison with the alpha variant, statistical modeling revealed a 36.8% increase for multiple (≥2 children) infections per class following infections with the delta variant. We conclude that the Lolli-Method is a powerful tool for SARS-CoV-2 surveillance and can support infection control in schools and daycare facilities.


Assuntos
COVID-19 , COVID-19/diagnóstico , COVID-19/epidemiologia , Teste para COVID-19 , Criança , Técnicas de Laboratório Clínico/métodos , Humanos , SARS-CoV-2/genética , Sensibilidade e Especificidade
2.
Cancer Res ; 81(7): 1775-1787, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33531370

RESUMO

Although immune checkpoint blockade (ICB) has shown remarkable clinical benefit in a subset of patients with melanoma and lung cancer, most patients experience no durable benefit. The receptor tyrosine kinase AXL is commonly implicated in therapy resistance and may serve as a marker for therapy-refractory tumors, for example in melanoma, as we previously demonstrated. Here, we show that enapotamab vedotin (EnaV), an antibody-drug conjugate targeting AXL, effectively targets tumors that display insensitivity to immunotherapy or tumor-specific T cells in several melanoma and lung cancer models. In addition to its direct tumor cell killing activity, EnaV treatment induced an inflammatory response and immunogenic cell death in tumor cells and promoted the induction of a memory-like phenotype in cytotoxic T cells. Combining EnaV with tumor-specific T cells proved superior to either treatment alone in models of melanoma and lung cancer and induced ICB benefit in models otherwise insensitive to anti-PD-1 treatment. Our findings indicate that targeting AXL-expressing, immunotherapy-resistant tumors with EnaV causes an immune-stimulating tumor microenvironment and enhances sensitivity to ICB, warranting further investigation of this treatment combination. SIGNIFICANCE: These findings show that targeting AXL-positive tumor fractions with an antibody-drug conjugate enhances antitumor immunity in several humanized tumor models of melanoma and lung cancer.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoconjugados/uso terapêutico , Neoplasias Pulmonares/terapia , Melanoma/terapia , Proteínas Proto-Oncogênicas/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Terapia Combinada , Resistencia a Medicamentos Antineoplásicos/imunologia , Sinergismo Farmacológico , Células HEK293 , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Imunoconjugados/administração & dosagem , Imunoterapia , Neoplasias Pulmonares/patologia , Masculino , Melanoma/patologia , Camundongos , Camundongos Nus , Camundongos Transgênicos , Terapia de Alvo Molecular/métodos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl
3.
J Proteome Res ; 9(4): 1913-22, 2010 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-20085282

RESUMO

The cancer cell secretome has emerged as an attractive subproteome for discovery of candidate blood-based biomarkers. To choose the best performing workflow, we assessed the performance of three first-dimension separation strategies prior to nanoLC-MS/MS analysis: (1) 1D gel electrophoresis (1DGE), (2) peptide SCX chromatography, and (3) tC2 protein reversed phase chromatography. 1DGE using 4-12% gradient gels outperformed the SCX and tC2 methods with respect to number of identified proteins (1092 vs 979 and 580, respectively), reproducibility of protein identification (80% vs 70% and 72%, respectively, assessed in biological N = 3). Reproducibility of protein quantitation based on spectral counting was similar for all 3 methods (CV: 26% vs 24% and 24%, respectively). As a proof-of-concept of secretome proteomics for blood-based biomarker discovery, the gradient 1DGE workflow was subsequently applied to identify IGF1R-signaling related proteins in the secretome of mouse embryonic fibroblasts transformed with human IGF1R (MEF/Toff/IGF1R). VEGF and osteopontin were differentially detected by LC-MS/MS and verified in secretomes by ELISA. Follow-up in serum of mice bearing MEF/Toff/IGF1R-induced tumors showed an increase of osteopontin levels paralleling tumor growth, and reduction in the serum of mice in which IGF1R expression was shut off and tumor regressed.


Assuntos
Biomarcadores Tumorais/sangue , Cromatografia em Gel/métodos , Cromatografia de Fase Reversa/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Proteoma/metabolismo , Proteômica/métodos , Animais , Linhagem Celular , Camundongos , Transplante de Neoplasias , Osteopontina/metabolismo , Receptor IGF Tipo 1/metabolismo , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Mol Cancer Ther ; 19(10): 2126-2138, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32847982

RESUMO

Higher-order death receptor 5 (DR5) clustering can induce tumor cell death; however, therapeutic compounds targeting DR5 have achieved limited clinical efficacy. We describe HexaBody-DR5/DR5, an equimolar mixture of two DR5-specific IgG1 antibodies with an Fc-domain mutation that augments antibody hexamerization after cell surface target binding. The two antibodies do not compete for binding to DR5 as demonstrated using binding competition studies, and binding to distinct epitopes in the DR5 extracellular domain was confirmed by crystallography. The unique combination of dual epitope targeting and increased IgG hexamerization resulted in potent DR5 agonist activity by inducing efficient DR5 outside-in signaling and caspase-mediated cell death. Preclinical studies in vitro and in vivo demonstrated that maximal DR5 agonist activity could be achieved independent of Fc gamma receptor-mediated antibody crosslinking. Most optimal agonism was observed in the presence of complement complex C1, although without inducing complement-dependent cytotoxicity. It is hypothesized that C1 may stabilize IgG hexamers that are formed after binding of HexaBody-DR5/DR5 to DR5 on the plasma membrane, thereby strengthening DR5 clustering and subsequent outside-in signaling. We observed potent antitumor activity in vitro and in vivo in large panels of patient-derived xenograft models representing various solid cancers. The results of our preclinical studies provided the basis for an ongoing clinical trial exploring the activity of HexaBody-DR5/DR5 (GEN1029) in patients with malignant solid tumors.


Assuntos
Epitopos/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos
5.
Sci Rep ; 9(1): 4976, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30899039

RESUMO

The targeting of specific tissue is a major challenge for the effective use of therapeutics and agents mediating this targeting are strongly demanded. We report here on an in vivo selection technology that enables the de novo identification of pegylated DNA aptamers pursuing tissue sites harbouring a hormone refractory prostate tumour. To this end, two libraries, one of which bearing an 11 kDa polyethylene glycol (PEG) modification, were used in an orthotopic xenograft prostate tumour mouse model for the selection process. Next-generation sequencing revealed an in vivo enriched pegylated but not a naïve DNA aptamer recognising prostate cancer tissue implanted either subcutaneous or orthotopically in mice. This aptamer represents a valuable and cost-effective tool for the development of targeted therapies for prostate cancer. The described selection strategy and its analysis is not limited to prostate cancer but will be adaptable to various tissues, tumours, and metastases. This opens the path towards DNA aptamers being experimentally and clinically engaged as molecules for developing targeted therapy strategies.


Assuntos
Biblioteca Gênica , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Aptâmeros de Nucleotídeos/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Nus , Polietilenoglicóis/química , Potássio/farmacologia
6.
JCI Insight ; 4(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31600169

RESUMO

Targeted therapies and immunotherapy have shown promise in patients with non-small cell lung cancer (NSCLC). However, the majority of patients fail or become resistant to treatment, emphasizing the need for novel treatments. In this study, we confirm the prognostic value of levels of AXL, a member of the TAM receptor tyrosine kinase family, in NSCLC and demonstrate potent antitumor activity of the AXL-targeting antibody-drug conjugate enapotamab vedotin across different NSCLC subtypes in a mouse clinical trial of human NSCLC. Tumor regression or stasis was observed in 17/61 (28%) of the patient-derived xenograft (PDX) models and was associated with AXL mRNA expression levels. Significant single-agent activity of enapotamab vedotin was validated in vivo in 9 of 10 AXL-expressing NSCLC xenograft models. In a panel of EGFR-mutant NSCLC cell lines rendered resistant to EGFR inhibitors in vitro, we observed de novo or increased AXL protein expression concomitant with enapotamab vedotin-mediated cytotoxicity. Enapotamab vedotin also showed antitumor activity in vivo in 3 EGFR-mutant, EGFR inhibitor-resistant PDX models, including an osimertinib-resistant NSCLC PDX model. In summary, enapotamab vedotin has promising therapeutic potential in NSCLC. The safety and preliminary efficacy of enapotamab vedotin are currently being evaluated in the clinic across multiple solid tumor types, including NSCLC.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Imunoconjugados/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Animais , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl
7.
BMC Genomics ; 9: 441, 2008 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-18816379

RESUMO

BACKGROUND: The identification of novel drug targets by assessing gene functions is most conveniently achieved by high-throughput loss-of-function RNA interference screening. There is a growing need to employ primary cells in such screenings, since they reflect the physiological situation more closely than transformed cell lines do. Highly miniaturized and parallelized approaches as exemplified by reverse transfection or transduction arrays meet these requirements, hence we verified the applicability of an adenoviral microarray for the elucidation of gene functions in primary cells. RESULTS: Here, we present microarrays of infectious adenoviruses encoding short hairpin RNA (shRNA) as a new tool for gene function analysis. As an example to demonstrate its application, we chose shRNAs directed against seven selected human protein kinases, and we have performed quantitative analysis of phenotypical responses in primary human umbilical vein cells (HUVEC). These microarrays enabled us to infect the target cells in a parallelized and miniaturized procedure without significant cross-contamination: Viruses were reversibly immobilized in spots in such a way that the seeded cells were confined to the area of the viral spots, thus simplifying the subsequent addressing of genetically modified cells for analysis. Computer-assisted image analysis of fluorescence images was applied to analyze the cellular response after shRNA expression. Both the expression level of knock-down target proteins as well as the functional output as measured by caspase 3 activity and DNA fractionation (TUNEL) were quantified. CONCLUSION: We have developed an adenoviral microarray technique suitable for miniaturized and parallelized analysis of gene function. The practicability of this technique was demonstrated by the analysis of several kinases involved in the activation of programmed cell death, both in tumor cells and in primary cells.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA não Traduzido/análise , Adenoviridae/genética , Linhagem Celular , Células Cultivadas , Inativação Gênica , Vetores Genéticos/química , Humanos
8.
Int J Med Microbiol ; 296(4-5): 277-86, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16527541

RESUMO

The ability of Listeria monocytogenes to breach mucosal and endothelial barriers of the host during infection is a hallmark property mediated by the internalins (Inl) A and B. We examined the invasive property of several L. monocytogenes strains representing 13 serotypes. We found that invasiveness is a heterogeneous phenotype amongst L. monocytogenes serotype strains. Despite this, many of the poorly invasive and non-invasive strains of L. monocytogenes express internalins at levels comparable to those of invasive isolates. Introduction of the inlAB locus from EGD-e into several poorly invasive strains had no effect on their invasive properties. A strain from serotype 4b that exhibits highly invasive properties was further examined. Deletion of the inlAB locus abrogated invasion of this strain while reintroduction of the inlAB locus into this strain restored invasiveness. An analysis of regions flanking the inlAB locus revealed considerable differences in the strains studied. Our results suggest that efficacious entry of L. monocytogenes into eukaryotic cells is complex and requires additional factors apart from internalins. Data presented here also suggest that the inlAB locus was introduced into L. monocytogenes by horizontal gene transfer with subsequent deletion and rearrangements occurring during evolution of this species.


Assuntos
Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Fatores de Virulência/fisiologia , Virulência/genética , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Western Blotting , Cromossomos Bacterianos/genética , DNA Bacteriano/genética , Deleção de Genes , Ordem dos Genes , Teste de Complementação Genética , Células HeLa , Humanos , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Sorotipagem , Sintenia , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA